本文目录
光伏发电和市电同时供电怎么接线?
不同厂家的设备可能具体接线会有不同,这里仅介绍接线架构和并网原理:
分布式光伏,自发自用,余量上网,这种应用就涉及到用电负载的同时供电。一般要装两块电表,逆变器出来装一块电表,记录光伏发电,用户侧并网点装一块双向电表,用来记录光伏向电网送电以及用户向电网买电。
并网馈电系统中,市电主要用于构建电网的电压/频率/相位。并网逆变器不输出电压,而是跟踪电网相位和波形,只向电网输出电流,因为光伏逆变器的电压比电网电压要高,根据电路原理,电流是从电压高的地方流向电压低的地方,所以只要光伏能发电,就一定会先送到负载端,多余的电会流向市电网络,形成对电网的供电。反之,光伏发电量不足时,逆变器输出的电压就不能维持比市电电压高,这时负载就自动变为由市电供电。
太阳能光伏专业就业这么样?
如果你是学光伏工程的专业的话,出来后想从事光伏方面的工作有以下几种,1、光伏产品销售员(包括光伏组件、光伏系统、光伏设备、光伏辅料等等)2、光伏系统工程师(光伏电站的设计、施工、管理、运营)3、光伏生产(光伏产品生产工艺、技术员、光伏生产设备)其中光伏生产包括光伏组件生产、电池片生产、硅片生产。
目前来说光伏这行业景气不太好,前途是光明的,但道路是坎坷曲折的;如果有公司要你,做光伏还是可以混饭吃的,混得好也容易拿高薪,自己上网了解下
我在大学里面的部分专业课程:应用光伏学、太阳能发电原理及应用、、太阳能光伏电池及其应用、并网型太阳能光伏发电系统、光伏建筑一体化、太阳能LED路灯设计与应用、发电厂电气主设备原理、半导体物理与器件、单片机基础、工程力学、工程制图、材料加工CAD、电路分析
还有很多光伏材料的专业课程、大学物理、大学化学等等;自然还会有其他一些政治、英语、数学之类的基础课程。不同大学,安排的课程也不同
光伏发电对房屋的损害?
1、损坏屋顶结构
太阳能光伏发电依靠太阳能电池板内部半导体产生的伏特效应。若屋顶的结构在设计之初,并未做加固处理。由于光伏发电设备本身很重,有可能会破坏屋顶结构,尤其是老房子的话,很有可能会损坏屋顶。
2、破坏楼顶防水层
安装光伏发电系统的支架需先在屋顶上钻孔,钻孔后会破坏房屋原本的防水层,如果没有重新做防水层的话,下雨就会漏水,由于螺丝与孔间有间隙,防水的工艺要求很高,若太厚会影响安装。太薄又没有效果。第二次防水的效果影响远远不如第一次,会增加漏水的可能性。
3、光污染问题
若安装光伏发电设备附近有比较高的楼房,很有可能反射一部分的太阳光到附近建筑物内部,给室内环境造成光污染,而相关研究表明,过度光照会导致眼睛的疾病,甚至给人的情绪产生焦虑、疲劳、注意力下降的问题。
光伏发电三相并网原理?
太阳能光伏发电是依靠太阳能电池组件,利用半导体材料的电子学特性,当太阳光照射在半导体PN结上,由于P-N结势垒区产生了较强的内建静电场,因而产生在势垒区中的非平衡电子和空穴或产生在势垒区外但扩散进势垒区的非平衡电子和空穴,在内建静电场的作用下,各自向相反方向运动,离开势垒区,结果使P区电势升高,N区电势降低,从而在外电路中产生电压和电流,将光能转化成电能。
系统组成
1、太阳能电池组件
一个太阳能电池只能产生大约0.5V的电压,远低于实际使用所需电压。为了满足实际应用的需要,需要把太阳能电池连接成组件。太阳能电池组件包含一定数量的太阳能电池,这些太阳能电池通过导线连接。如一个组件上,太阳能电池的数量是36片,这意味着一个太阳能组件大约能产生17V的电压。
通过导线连接的太阳能电池被密封成的物理单元被称为太阳能电池组件,具有一定的防腐、防风、防雹、防雨的能力,广泛应用于各个领域和系统。当应用领域需要较高的电压和电流而单个组件不能满足要求时,可把多个组件组成太阳能电池方阵,以获得所需要的电压和电流。
2、直流/交流逆变器
将直流电变换成交流电的设备。由于太阳能电池发出的是直流电,而一般的负载是交流负载,所以逆变器是不可缺少的。逆变器按运行方式,可分为独立运行逆变器和并网逆变器。独立运行逆变器用于独立运行的太阳能电池发电系统,为独立负载供电。并网逆变器用于并网运行的太阳能电池发电系统将发出的电能馈入电网。逆变器按输出波形又可分为方波逆变器和正弦波逆变器
发电并网原理及解释?
发电并网是将发电设备产生的电能输送到电力系统中,实现与现有电网的连接和协同运行的过程。发电并网原理涉及多种技术和设备,包括发电设备、电力电子设备、控制系统等。以下是发电并网的基本原理和解释:
1. 发电设备:发电并网的第一步是利用各种类型的发电设备(如风力发电机、太阳能光伏发电系统、水力发电机等)产生电能。这些发电设备通常以交流或直流形式产生电能。
2. 电能转换:对于交流发电设备,通常可以直接并网。但对于直流发电设备,如太阳能光伏发电系统,需要将直流电能转换为交流电能。这通常通过逆变器实现。逆变器将直流电能转换为与电网相匹配的交流电能,并控制其电压、频率和相位。
3. 并网设备:在发电设备与电网之间,需要安装一些并网设备,如变压器、开关设备、保护装置等。这些设备用于调整发电设备的输出参数,使其与电网的要求相匹配,并确保电网的安全稳定运行。
4. 控制系统:发电并网过程中,需要实时监测和调整发电设备的输出参数,以确保与电网的稳定连接。这通常通过电力电子控制系统实现。控制系统可以自动调整发电设备的输出,以适应电网的电压、频率和负载变化。
5. 电力调度:在发电并网过程中,电力调度中心负责监控和管理整个电力系统的运行状态,包括发电设备、输电线路和负荷需求等。电力调度中心会根据电网的实际情况,调整发电设备的出力,以实现电力系统的优化运行。
6. 电网保护:发电并网过程中,需要采取一定的保护措施,以确保电网的安全稳定运行。这包括过电压保护、过电流保护、频率保护等。这些保护措施可以防止发电设备对电网造成不利影响,保障电力系统的稳定运行。
总之,发电并网是通过多种技术和设备,实现发电设备与电网的稳定连接和协同运行。这一过程需要考虑发电设备的类型、输出参数、并网设备、控制系统等多方面因素,以实现电力系统的优化运行。