大家好!今天让小编来大家介绍下关于日本光伏组件无框_一篇看懂!光伏组件回收超全科普的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.光伏组件的维护与保养2.一篇看懂!光伏组件回收超全科普
光伏组件的维护与保养
1、光伏组件表面应保持清洁,应使用干燥或潮湿的柔软洁净的布料擦拭光伏组件,严禁使用腐蚀性溶剂或硬物擦拭光伏组件。应在辐照度低于200W/㎡的情况下清洁光伏组件,不宜使用与组件温差较大的液体清洗组件。
2、光伏组件应定期检查,若发现下列问题应立即调整或更换光伏组件。光伏组件存在玻璃粉碎、背板灼焦、明显的颜色变化;光伏组件中存在与组件边缘或任何电路之间形成连通通道的气泡;光伏组件接线盒变形、扭曲、开裂或烧毁,接线端子无法良好接触。
3、光伏组件上的带电警告标识不得丢失。
4、使用金属边框的光伏组件,边框和支架应结合良好,两者之间接触电阻不大于4Ω,边框必须牢固接地。
5、在无阴影遮挡条件下工作时,在太阳辐照度为500W/㎡以上,风速不大于2m/s的条件下,同一光伏组件外表面(电池正上方区域)温度差异应小于20℃。装机容量大于50kWp的光伏电站,应配备红外线热像仪,检测光伏组件外表面温度差异。
6、使用直流钳型电流表在太阳辐射强度基本一致的条件下测量接入同一个直流汇流箱的各光伏组件串的输入电流,其偏差应不超过5%。
7、支架的所有螺栓、焊缝和支架连接应牢固可靠,表面的防腐涂层不应出现开裂和脱落现象,否则应及时不刷。
9、对带有极轴自动跟踪系统的太阳能电池方阵支架,要定期检查跟踪系统的机械和电气性能是否正常。
10、要定期检查太阳能电池方阵的金属支架有无腐蚀,并定期对支架进行油漆防腐处理。方阵支架要保持接地良好。
11、使用中要定期(如1~2个月)对太阳能电池方阵的光电参数及输出功率等进行检测,以保证电池方阵的正常运行。
12、使用中要定期(如1~2个月)检查太阳能光伏组件的封装及连线接头,如发现有封装开胶进水、电池片变色及接头松动、脱线、腐蚀等,要及时进行维修或更换。
13、要保持太阳能光伏组件方阵采光面的清洁,如积有灰尘,可用干净的线掸子进行清扫。如有污垢清扫不掉时,可用清水进行冲洗,然后用干净的抹布将水迹擦干。切勿用有腐蚀性的溶剂清洗或用硬物擦拭。遇有积雪时要及时清理。
一篇看懂!光伏组件回收超全科普
光伏支架能够保护光伏组件,避免光伏组件被腐蚀或者被风力破坏。而光伏组件边框是用于固定光伏组件的重要部件。
现有技术中,光伏组件固定于光伏组件边框后,光伏组件边框与光伏支架的安装方式之一为压块安装。参见图1,压块为一体成型结构,包括依次连接的第一水平部11’、竖直部12’和第二水平部13’,第二水平部13’上开设有螺纹孔。将光伏组件边框2’放置在光伏支架3’的合适位置后,压块的第一水平部11’压设在光伏组件边框2’的上表面,再将第二水平部13’通过螺栓固定到光伏支架3’上,完成光伏组件边框2’在光伏支架3’上的安装。
但是,现有技术中,采用压块安装时,需要在光伏组件边框2’上测量压块的最佳安装位置,然后用第一水平部11’压住光伏组件边框,再将螺栓拧入第二水平部13’上的螺纹孔内使得第二水平部13’固定到光伏支架3’上,操作繁琐,且在旋拧螺栓的过程中第一水平部11’与光伏组件边框2’的相对位置可能会发生变化,导致光伏组件边框2’安装不稳。尤其是当光伏组件边框2’的尺寸越大时,安装时间会更长,操作难度也更大。压块位置的优化
组件的准确力学模型为叠合板,叠合板的变形和应力是各方向的线单元相互作用的结果。为简化计算,取板上受力最简单、对组件承载能力影响最大的边沿线单元进行分析,不考虑压块大小对变形的影响时,其长边的线单元可视为带悬臂的简支梁,见图3;短边的线单元可视为简支梁,见图4。其中,q为均布荷载;m为组件长边悬臂长度,即压块中心到组件边沿的距离;l为组件长边的两压块间距;n为组件短边长度。
图3 长边线单元取样位置和力学模型
图4 短边压块中心线单元取样位置和力学模型
根据《建筑结构静力计算手册》[7]可知,图3中,组件长边力学模型的外边沿C点的最大挠度与荷载q、距离l和m的关系为:
式中,f1max为组件长边力学模型的外边沿C点的最大挠度;E、I分别为组件的弹性模量和惯性矩;λ为组件长边的两压块之间的线单元最大挠度,
如图3中,组件长边的两压块之间的线单元最大挠度与载荷q、距离l的关系为:
如图4中,组件短边的压块中心线单元最大挠度与荷载q、组件短边长度n的关系为:
由式(3)可知,压块位置对组件短边的压块中心线单元挠度无影响,因此下文在进行工程算法研究时,暂不考虑压块位置对组件短边的影响。
根据李顺美等[8]的研究,薄膜光伏组件中电池层只有几微米厚,而玻璃、EVA胶的厚度均远大于电池层的厚度,组件的力学性能主要由玻璃和EVA胶决定。由于EVA胶的弹性模量与组件前、后背板的玻璃相比相差1.85×104倍[8],为简化计算,在采用工程算法计算时,组件的弹性模量等同于玻璃,按照弹性模量E=72 GPa、均布荷载q=2400 Pa进行计算。
根据杨小攀等[9]的研究,薄膜光伏组件在进行力学分析时,可采用纯玻璃板模型代替原组件进行简化计算,其等效厚度时可采用最大应力相等公式进行计算。本模型在计算时取用厚度h=4.92 mm。
压块的最优位置选用原则为:应使组件边沿和中心的变形f1max、f2max均最小。根据此原则,设置压块中心到组件边沿的距离m的范围为60~405 mm,得到如图5所示的曲线。
由图5可知,组件边沿(A或D点)的挠度逐渐由负值变为正值,对应的变形由翘曲变为弯曲。挠度在m值较小时,组件悬臂部分的弯曲刚度较大,抵抗变形的能力强;随着悬臂长度的增大,弯曲刚度逐渐变小,在m=120 mm时,组件中心在变形内力的作用下达到平衡状态,此时出现了翘曲状态下组件边沿变形的最大值;当m=265 mm时,组件边沿的变形几乎为零;之后随着m值的持续增大,组件边沿的变形也逐渐增加。
图5 不同m值下组件挠度的变化曲线
相比之下,随着m值的不断增大,组件中心挠度逐渐减小,组件中心的变形也由弯曲变为翘曲;当m=295 mm时,组件中心的变形为零;之后随着m值的增大,组件中心由弯曲变为翘曲。
由上述分析可知,组件边沿(A或D点)和中心的变形量最小值均为零,但对应的m值并不同,m值偏差较大主要是由压块位置的“顾此失彼”造成的。
方差[10]是用来度量随机变量和其数学期望(即均值)之间偏离程度的。为合理评估不同m值下组件中心和边沿变形量的变化趋势以获取最优m值,对同一m值下取组件边沿和中心变形的平均值Mn和方差进行比较。
同一m值下组件变形平均值Mn、方差的变化曲线分别如图6、图7所示。由图6可知,当m<270 mm时,组件边沿和中心变形的Mn呈线性减小,之后随着m值的增大,Mn呈线性增长;Mn的最小值出现在m=270 mm,为1.92 mm。由图7可知,当m<200 mm时,组件边沿和中心变形的急剧减小,之后其变化幅度逐渐减小;当m=280 mm时,的最小值为0.124;当m>280 mm后,逐渐增大。
图6 同一m值下组件变形平均值Mn的变化曲线
图7 同一m值下组件变形方差的变化曲线
当m=270 mm时,组件边沿和中心变形的Mn最小,为1.92 mm,此时组件边沿和中心变形的=1.63;当m=280 mm时,组件边沿和中心变形的Mn为2.26 mm,组件中心变形和边沿变形的最小,为0.124。可见两种情况下二者的偏差不大。
综合考虑图5~图7,得出压块的最佳位置m取值范围在270~280 mm。为找到压块的最优位置采用有限元算法进行模拟。
组件回收是光伏产业链上的最后一环,也被视为整个光伏绿色产业链的“最后一公里”。
随着光伏发电的大规模利用, 退役和废旧光伏组件的回收利用 成为越来越突出问题,同时也为行业带来了巨大的新商机。如今,这一新兴产业已经处于爆发的前夕。
一、组件回收——必要性与紧迫性并存
随着全球环境恶化和能源危机的日益加剧,碳达峰、碳中和已成为全球的共识,光伏新能源作为各国实现气候目标的重要途径之一,装机容量更是快速增长。
2021年,全球新增光伏装机量达到183GW,同比增长30%以上。据BNEF彭博新能源财经预计,到2030年这一数字将增加到334GW。我国作为光伏产业发展最成熟的国家,光伏发电累计装机容量已超过200GW,预计2030年新增装机水平将达到105GW~128GW。
未来光伏发电的装机规模,无疑将由“GW时代”跨越至“TW时代”。
但与此同时,光伏发电的大规模应用,却不可避免地衍生出了废旧光伏组件的回收问题。
据国际能源机构一组预测数据显示,2030年,全球光伏组件回收将达800万吨左右,迎来回收大潮。2050年,全球则会有将近8000万吨的光伏组件进入回收阶段。
其中, 中国将在2030年面临需要回收达150万吨的光伏组件,在2050年将达到约2000万吨,是埃菲尔铁塔重量的2000倍。
如此大量的废旧光伏组件如果处理不当,给环境、社会带来不良影响无疑将不可小觑。
但如果处理得当,则不仅可以助力资源的循环再利用,缓解资源短缺,还能够培育新兴产业,创造更多就业价值,同时真正实现光伏全生命周期的绿色发展,促进光伏产业的可持续发展。
组件回收必要性与紧迫性并存,但当前组件回收工作仍然面临着诸多挑战。
二、组件回收目前面临的难点有哪些?
1、非法遗弃和非法倾倒
安装在建筑物屋顶上的分布式光伏电站,往往会随着建筑物的拆除而废弃。在土地上搭建的地面电站则可能随着土地租赁到期被拆掉,如果业主无法支付或准备回收处理的费用,那么废弃的组件很可能会被放置在原处,或者被非法倾倒在其他土地上。
2、有害物质泄漏和扩散的潜在威胁
实际上,大多数废弃光伏电池板件的归宿是被当做废品卖到废品回收站。
我们知道,根据电池板的类型,太阳能电池板含有铅、硒和镉等有害物质。当电池板被卖到废品回收站后,很少有人知道其中有这么多有害物质,也就很少会进行适当的废弃处理。
3、处理场所短缺
以日本为例,自2012年日本引入FIT(可再生能源固定价格收购)制度开始,光伏发电装机规模明显扩大且扩大速度持续提升。按照光伏组件25年的生命周期来计算,预计会在2040年左右进入密集报废期,每年约产生80万吨的废弃光伏电池板。如果把这些电池板铺开, 面积相当于182个天安门广场, 高峰期可能导致回收处理场所的暂时短缺。
4、技术难点
目前已有的成熟光伏组件回收处理技术主要有三种,包括 物理分离、有机溶剂溶解法、热处理与化学方法相结合。
①物理分离法
物理分离法是指将组件经破碎、金属剥离、湿法冶金分离等步骤来回收金属。实验表明此方法仅可获得17.4%金属回收率。
②有机溶剂溶解法
有机溶剂溶解法是指选择几种有机溶剂浸泡去除背板的晶硅电池片,用有机溶剂溶解封装材料EVA,使玻璃与电池片分离,此方法可以获取整块完整的电池片。
③热处理与化学方法相结合法
热处理与化学方法相结合法是指把去除背板的电池板放在管式炉或者马弗炉中,将封装材料EVA去除干净,得到纯净的电池片,再使用化学方法把电池片表面的减反射层、银浆和铝去除,得到纯净的硅片。
以上方法中,无机酸和有机酸溶解只针对EVA的去除和分离,未考虑到边框的拆除和硅晶片再利用,且剩下的废液也难处理;而物理分离法也不够完善,未能分离各单一的组分。同时,对含氟背板的回收问题,也是一个难点。我国光伏退役回收工作的重要参与者、带头人,中国科学院电工研究所高级工程师吕芳表示:“过去90%的光伏组件背板是含氟背板,不能烧、埋,否则会带来不可逆的环境污染,对人体也有重大危害。”
光伏组件的回收处理方法仍有待探索。
5、高成本
无锡尚德总裁何双权曾发文指出,目前很大一部分组件建于偏僻的西北地区或位于屋顶之上,增加了运输成本,同时需要购置专门的回收设备与相关材料,加上技术尚不成熟,投资消耗较大,回收物质的纯度却不高,以及尚未形成大规模的操作形式,因此 光伏组件回收成本仍高。
高成本仍是光伏组件回收市场难以回避的一个“门槛”。
三、光伏组件回收正呈产业化趋势
尽管光伏组件回收还面临着诸多棘手难题,但光伏的飞速发展和大规模应用,正为这一新兴产业的诞生和发展不断添火。
过去数年,韩国、日本和来自欧盟的一些国家在光伏组件回收产业化问题上一直积极布局。
欧盟于2014年正式将光伏组件纳入“报废电子电气设备指令”,还通过“PV CYCLE”和“CERES CYCLE”回收组织负责处理废旧光伏组件。2017年,又进一步颁布了针对光伏组件回收的欧盟标准,并建设了化学法示范线和物理法/化学法综合示范线。
2018年, 法国建立了世界首个光伏组件回收工厂 ,对光伏组件材料的回收利用率超95%;
2021年,澳大利亚正式批准Clive Fleming成立澳洲首家光伏组件回收工厂Claiming PV,尚德、阿特斯、英利、韩华等公司参与技术支持;
在国内,光伏组件回收发展起步于“十二五”规划,依托于科技部“863”课题计划,经历了长达10年的实验室研究,在技术上可与国外并驾齐驱。
2019年4月,国家科技部的国家重点研发计划可再生能源和氢能技术重点专项“成套技术和装备项目”开始实施,英利集团、晶科能源等13家光伏企业联手中国科学院等众多科研院所,针对光伏组件的回收技术、关键装备研制、回收处理示范线、回收标准体系和监管机制,积极展开探索。
同时,自2017年起,国家电投集团黄河上游水电开发有限责任公司(以下简称“黄河公司”)还率先自主开展光伏组件环保处理、回收的关键技术和装备的研究。截止2021年12月底, 黄河公司已建成我国首条组件回收中试线 ,闭环形成多晶硅、硅片、电池、组件、支架、光伏电站规划设计及建设、运行维护、检测评价及组件回收的垂直一体化光伏全产业链。
三、亟待更多力量的加入
中国科学院电工研究所高级工程师、中国绿色供应链联盟光伏专委会秘书长吕芳表示:“未来,光伏组件回收将成为光伏产业链的新产业增长点,必然会有人进入,不管是资本方还是工业界等都会进入。”而当前国内光伏组件回收技术正是需要“百花齐放”。
期待未来随着更多力量的加入,如何低成本地实现光伏废弃组件的回收利用和无害化处理等一系列问题,都能够得到逐一破解,真正实现光伏全生命周期的绿色发展,实现光伏产业的可持续发展。