大家好!今天让小编来大家介绍下关于有机光伏_有机光伏电池的有机材料的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.各种屋顶光伏发电要求是什么2.有机光伏电池的有机材料
3.有机光伏电池的优点
各种屋顶光伏发电要求是什么
摘要:厂房屋顶、居民屋顶、斜坡屋顶、钢构屋顶,对于屋顶光伏发电要求都存在一定的差异,如居民屋顶光伏发电要求中有屋顶面积需够大、屋顶的朝向适合安装光伏组件、屋顶周围没有遮挡物等。那么在安装的时候,屋顶光伏的坡度和角度多少比较好呢?赶紧和我一起到文中来寻找答案吧!一、各种屋顶光伏发电要求是什么
不少想安装光伏发电系统的朋友想了解自己家的屋顶能不能装光伏发电系统,屋顶光伏发电有哪些要求?今天就向朋友们介绍一下厂房屋顶、居民屋顶、斜坡屋顶、钢构屋顶光伏发电的要求:
1、厂房屋顶光伏发电要求
(1)荷载符合要求,能承受抗压,风压、雪压等各种荷载。
(2)防水屋面。
(3)管线不能太多。
(4)没腐蚀性,厂房内没有腐蚀性气体或液体。
(5)朝向合要求。
2、居民屋顶光伏发电要求
(1)屋顶面积需够大
以5KW光伏电站为例,光伏组件数量大约为16片,要求屋顶可用面积大于35平方米左右,如果不足,则无法安装。
(2)屋顶的朝向适合安装光伏组件
安装光伏电站朝向最好是向南安装,因为我们在北半球,发电板朝南时发电量最高,太阳辐射也是最好的。
(3)屋顶周围没有遮挡物
房屋的周边环境很重要。阴影遮挡对光伏发电系统有着极其重要的影响,光伏组件的寿命也与此息息相关,因此在系统安装的区域应尽可能避免有障碍物遮挡。
(4)屋顶需坚固
光伏电站建在屋顶,要充分考虑到屋顶的固定荷重、风压荷重、雪压荷重、地震荷载能力,同时还要有足够能力来承载光伏组件,支架以及光伏线缆,这部分重量。
(5)拥有房屋屋顶所有权
家庭屋顶的并网申请需要业主本人的身份证及房产证,所以这个房屋的所有权必须是清晰的;如果是高层屋顶,通常屋顶属于公共区域,若想安装光伏系统,需获得全体邻居的同意。
特殊:如果别墅本身不属于个人所有,则需签署一份较长期的租赁期且经过产权人同意。鉴于光伏发电系统的收益长达至少25年,所以目前这种情况主要集中于分布式工商业项目中。
3、斜坡屋顶光伏发电要求
(1)不改变原建筑功能,安装光伏发电组件后不影响建筑本身实用功能(承重、采光、通风、防水)。
(2)能有机结合,光伏板需与建筑屋面平行且有机结合,不得超出屋面外沿,光伏板最高点不得高过屋脊。
(3)满足技术要求,能满足屋顶消防、结构安全、综合管线、维修、排水等方面的技术要求。
4、钢构屋顶光伏发电要求
(1)合适的屋面形式,原有建筑物的钢构屋面形式适合光伏组件支架的安装。
(2)承载力符合要求,钢构屋顶能承受光伏组件的重量。
(3)没有不利影响,安装光伏组件后不能产生积水、积尘和高温等不利影响。
(4)足够的空间,钢构屋顶有维修空间。
二、屋顶光伏的坡度和角度多少比较好
不同的角度一年受到的光照时间长短也不一样,平放的话太阳不是直射,效果一天差别不是很大,但是长时间的累积下来,就能达到很多的差距。对于坡度和角度来说,大多数的太阳能板角度都是45度左右,这个根据的情况是由当地的纬度决定的,因为不同的纬度太阳光的角度也不一样,南方的话就建议在30度左右,不过要求细致一点的话,可以用电脑根据当地的纬度,准确的计算出一个数值,这样的发电效率才能达到理想的目标。
有机光伏电池的有机材料
光伏产业概述
目前人类能源消费结构中,石油、煤炭、天然气、铀等矿物资源占到了人类能源供给量的80%以上。但常规矿物质能源储量有限,如果无节制的开采,全球将很快面临能源短缺危机。另外常规矿物质能源使用后排放大量的CO2、SO2、核废料等威胁着人类生存环境。近年来,全球性的气候变暖,两极冰川融化,海平面上升,自然灾害频繁发生,生物多样性消失,酸雨范围越来越广,高空臭氧层空洞扩大等现象,都是因为人类大量使用并依赖传统能源所造成。
资料来源:中国可再生能源发展战略研讨会论文集
图表1 世界及中国主要能源资源使用年限
发展环保可再生能源是解决上述问题的最有效途径,也是人类能否在地球上永续生存下去的关键要素。在诸多可再生能源中,太阳能是唯一可以大量替代传统能源的能源。而在太阳能产业中,光伏产业由于其具有的诸多优点,是可再生能源中发展最快的产业,无疑也是最具有发展前景的产业。
资料来源:IEA(国际能源署)报告《Renewable Information2010》
图表2 1990~2008年世界可再生能源供给的年增长率
一、光伏产业的特点
太阳能是唯一能够保证人类未来需求的能量来源。光伏发电是利用太阳能将光子转化为电子的一个纯物理过程,转化过程不排放任何有害物质,其特点如下:
充足性:据美国能源部报告(2005年4月)世界上潜在水能资源4.6TW(1TW=1012W),经济可开采资源只有0.9TW;风能实际可开发资源2~4TW;生物质能3TW;海洋能不到2TW;地热能大约12TW;太阳能潜在资源120000TW,实际可开采资源高达600TW。
安全性:运行可靠、使用安全;发电规律性强、可预测(调度比风力发电容易)。
广泛性:生产资料丰富(地壳中硅元素含量位列第二)、建设地域广(荒漠、建筑物等)、规模大小皆宜。
免维护:使用寿命长(20~50年、工作25年效率下降20%)、免维护、无人值守。
清洁性:无燃料消耗、零排放、无噪声、无污染、能量回收期短(0.8~3.0年)。
二、光伏产业发展历程
世界上最早开始研究太阳能要追溯于1839年法国物理学家贝克勒尔首次发现光伏效应,并由爱因斯坦在1904年对其做出了理论解释,且很快得到实验证实;1954年美国贝尔实验室制成第一个单晶硅光伏电池;1959年第一个光电转换效率为5%的多晶硅光伏电池问世; 1960年,晶硅光伏电池发电首次并入常规电网;1969年世界上第一座光伏发电站在法国建成;1975年美国制作出非晶硅光伏电池;1980年代初,光伏电池开始规模化生产;1983年美国在加州建立了当时世界上最大的光伏电厂;1983年世界光伏组件产量达21.3MW(1MW=106W),光伏产业显露雏形。1990年以后,在能源危机和全球气候变暖的压力下,可再生能源越来越受到关注,德、美、日等国政府相继提出了光伏发电的“光伏屋顶计划”、“新阳光计划”等,在政府的政策法规和行动计划推动下,全球光伏产业以一个朝阳产业的面貌高速成长,同时太阳能光伏发电被誉为世界十种能源中发展最快的能源。
1990年以后全球光伏市场的发展和转移经过三个阶段。第一阶段,1996年之前,美国光伏市场占全球市场份额达32.1%,年复合增长率达25%,当之无愧地成为世界光伏市场中心。第二阶段,1996~2002年间,日本光伏市场保持了35%的年均增长,一跃成为光伏市场最大消费国,近年日本市场小幅回落,但销售的存量仍位居世界前列,2007年光伏电站存量达1GW(109W)左右。第三阶段,2003至今,欧盟成为绝对的市场主力,这得益于德国和西班牙等国的光伏补贴政策,快速刺激了欧盟市场中心的形成,目前我国有近80%的光伏产品出口至欧盟地区。
资料来源:EPIA(欧洲光伏产业协会,世界规模最大的太阳能光伏行业协会)
图表3 2009年光伏产品按地区安装比例
三、光伏发电技术发展趋势
目前已经进入商业化竞争的光伏发电产业按电池技术路线分类主要分为晶体硅光伏电池、薄膜光伏电池和聚光光伏电池。其中晶体硅光伏电池是目前发展最成熟的在应用中居主导地位。
太阳能电池根据所用材料的不同,还可分为:硅光伏电池、多元化合物薄膜光伏电池、聚合物多层修饰电极型光伏电池、纳米晶光伏电池、有机光伏电池等。
图表4 光伏电池分类及规模化生产转化效率
1.多元化合物薄膜光伏电池
多元化合物薄膜光伏电池材料为无机盐,其主要包括砷化镓III-V族化合物、硫化镉、碲化镉及铜铟硒薄膜光伏电池等。
硫化镉、碲化镉薄膜光伏电池的效率较非晶硅薄膜光伏电池效率高,成本较晶体硅光伏电池低,并且也易于大规模生产,但镉有剧毒,会对环境造成严重污染,因此并不是最理想的光伏电池。
砷化镓(GaAs)III-V族化合物光伏电池的转换效率可达40%。GaAs 化合物材料具有十分理想的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池。但是GaAs材料的价格不菲,因而在很大程度上限制了GaAs电池的普及。
铜铟硒薄膜光伏电池(简称CIS)适合光电转换,不存在光致衰退问题,转换效率也较高。具有价格低廉、性能良好和工艺简单等优点,将成为今后发展光伏电池的一个重要方向。唯一问题是材料来源,铟和硒都是稀有元素,因此这类电池的发展必然受到限制。
2.聚合物多层修饰电极型光伏电池
聚合物多层修饰电极型光伏电池以有机聚合物代替无机材料是刚刚开始的一个光伏电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本底等优势,对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备光伏电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是晶体硅光伏电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。
3.纳米晶光伏电池和有机光伏电池
纳米晶光伏电池转化效率可达10%,有机光伏电池转化效率可达6%,转换效率还比较低,这两类电池还处于研究探索阶段,短时间内不可能大规模商业化应用。
4.聚光太阳电池
聚光光伏电池最大优点就是高转换效率(30%~40%),以及较小的占地面积。聚光光伏发电系统主要由高效聚光太阳电池、高性能的聚光跟踪系统、有效的电池散热系统组成。由于高效聚光光伏电池的技术路线尚未定型,聚光光伏发电规模化产业链也未形成,高性能的聚光跟踪系统和有效的电池散热系统的成本控制难度大,因而聚光光伏发电暂无优势可言。
5.晶体硅光伏电池和薄膜光伏电池
关于“晶硅”和“薄膜”孰优孰劣的讨论也很多。从市场表现来看,05年起“薄膜”市场份额开始不断增加,到09年达到了18%(数据来源:Solarbuzz),趋势相当可观。而且正是从09年开始,发展“薄膜”的呼声也越来越高:一方面硅晶电池刚刚经历了“硅”价巨幅波动的事件导致各大厂家受损;另一方面,美国的FirstSolar公司异军突起,把薄膜电池推上了新高度。2010年,国内很多地方都上了薄膜项目,而一旦开始生产薄膜电池,问题也就暴露出来。
首先是技术门槛问题。“晶硅”技术经历了多年发展,已经进入成熟期,国内几个大型企业已经熟练掌握了晶硅电池的技术,并且有了自己的技术创新和突破。而薄膜电池则不同,技术仍在不断发展变化,特别是非硅薄膜电池技术,材料和工艺上都有很多技术难关,国内的大多数企业并不具备足够的水平,还都只是探索阶段,却要面临在薄膜电池技术领先的FirstSolar公司和已经技术成熟的晶硅电池双重压力,发展困难可想而知。
其次是资金门槛问题。薄膜电池的设备投入比晶硅电池大,而且所有配套设备都依靠进口。随着薄膜电池技术不断发展,生产设备也随之更新换代,很容易造成设备投资上的浪费。
近年来晶硅组件价格一路走低,与薄膜组件的价格已经很接近,薄膜组件的价格优势已不再明显。但“晶硅”对比“薄膜”仍然存在高的转换效率和较长的使用寿命的优势。事实上,一些原打算开展薄膜电池项目的企业,现在也都把项目放缓(尚德、英利),所以薄膜电池想要真的发展,还是需要一定的时间。
单晶硅光伏电池与多晶硅光伏电池相比转化效率高(单晶18~20%、多晶16~18%)、成本高,由于其成本控制难度大,全面胜出的可能性不大。
6.太阳能光热发电
除光伏发电外达到工程应用水平的还有太阳能光热发电。太阳能光热发电的建设和运行门槛很高,我国在太阳能光热发电部件研发上还几乎是空白:曲面反光镜,高温真空管,有机朗肯循环发电机组,斯特林发电机组等。此外,与光伏发电不同,光热发电对于环境也有更高要求:必须直射光,而且需要水冷却,这样在荒漠地区,就无法满足。我国目前太阳能光热发电尚处于研究示范阶段,光热发电与常规电厂结合成互补电站,独立稳定工作的不多(示范项目:江苏江宁县70kW示范电站,863计划北京延庆1MW实验电站)。由于技术障碍,我国在5~10年内都会处于试验示范阶段,光热发电不会成为主导潮流。
结论
从技术成熟度、转化效率及材料来源几方面综合判断,未来5~10年太阳能发电技术占主流的仍为晶体硅(以多晶硅为主)和非晶硅薄膜光伏技术。目前市场占有率:多晶硅电池52%,单晶硅电池38%,非晶硅薄膜电池8%,其他化合物薄膜电池2%。发展非晶硅薄膜光伏技术,还不宜盲目扩大规模,还是应该重点放在研究上,深入掌握核心技术。
有机光伏电池的优点
太阳能电池是一个特别的半导体二极管,它可能将可见光能转化为直流电,一些太阳能电池可能转化红外和紫外光的能量为直流电。
通常用于有机光伏电池的材料都是有大量共轭键的,共轭键是由交替碳碳单键和双键组成的,共轭键的电子的简并轨道是离域的,形成了离域成键轨道π轨道和反键轨道π*。离域π键是最高占据轨道(HOMO),反键轨道π*是最低未占据轨道(LUMO)。HOMO和LUMO的能级差被认为是有机电子材料的[带隙],带隙一般在1-4 eV。
当这些材料吸收了一个光子,就形成了激发态,并被局限在一个分子或一条聚合物的链,激发态可以被看作是在静电力作用结合的一个电子和空穴,也就是激发子,简称激子。在光伏电池中,激子在不同物质的异质结形成的有效场中成为自由的电子空穴对,有效场使电子从吸光体(也就是电子给体)的导带降到受体分子的导带上从而破坏了激子,因此电子受体材料的导带边界,也就是它的LUMO必须低于吸光体材料。
相对于无机太阳能电池,有机太阳能电池具有如下优点:
(1)与无机太阳能电池使用的材料相比,有机半导体材料的原料来源广泛易得、廉价,环境稳定性高,有良好的光伏效应、材料质量轻、较高的吸收系数(通常>105cm-1)、有机化合物结构可设计且制备提纯加工简便、加工性能好,易进行物理改性等。
(2)有机太阳能电池制备工艺更加灵活简单,可采用真空蒸镀或涂敷的办法制备成膜,还可采用印刷或喷涂等方式,生产中的能耗较无机材料更低,生产过程对环境无污染,且可在柔性或非柔性衬底上加工,具有制造面积大、超薄、廉价、简易、良好柔韧性等特点。
(3)有机太阳能电池产品是半透明的,便于装饰和应用,色彩可选。