大家好!今天让小编来大家介绍下关于光伏组件发电量计算_光伏发电效率计算?的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.光伏板发电量是原来的3倍是怎么计算的2.光伏发电效率计算?
3.太阳能发电能力如何计算?
光伏板发电量是原来的3倍是怎么计算的
光伏发电量是怎么计算出来的?
WeSunGit
WeSunGit提供屋顶光伏发电一站式管家服务。
来自专栏光伏
发电量是光伏系统里面最重要对指标之一,今天小编想简单重温(可以写普及吗?)一下光伏发电量是怎么计算出来的。
发电量计算从本质上来说就两部分:光照辐射度和系统效率。
按照《光伏发电站设计规范 GB50797-2012》第6.6条:发电量计算中规定:
光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置和环境条件等各种因素后计算确定。
光伏发电站年平均发电量Ep计算如下:
Ep=HA×PAZ×K
式中:
Ep:上网发电量(kW·h);
HA:水平面太阳能年总辐照量(kW·h/m2);
PAZ :系统安装容量(kW);
K:为综合效率系数。
满满的专业术语,用“人话”解释就是:
光伏发电量=装机量*光照辐照量*综合效率
装机量:安装组件数量*每块组件的峰值功率。这里要注意不同大小的组件,不同类型的组件功率会有差异。那些按照每块组件给多少租金的有可能会少算哦。
光照辐照量:别听见辐照就被吓到,这个说的是太阳光照的能量,太阳多光照好,光照辐照量就多。(下期再细解释光照辐照量怎么来的,怎么测算,水平面光照和倾斜面光照的区别,不同地方光照辐照量有什么区别等。)这里要说明一点:光伏辐照量和有害的“辐射”没任何关系,重要事情说三遍“质量有保障的光伏系统没有辐射,对人体无害”,“质量有保障的光伏系统没有辐射,对身体无害”,“质量有保障的光伏系统没有辐射,对身体无害”。
综合效率就是把接收到的光照转化为电能的效率,可以理解为转化效率。和系统设计,设备等有关。也经常被称为“系统效率”。这里也是容易藏猫腻的地方,好的系统和差的系统效率差异会比较大,造价也会有很大区别。一分钱一分货,都是要长久生存发展的,您要让从业人员挣钱,他们才能长久服务。建议别贪便宜,不然您想省一毛钱每瓦,从业人员想的是赶紧拿到您的钱走人。
说了这么多,举个实例:在上海安装15kW光伏发电系统,假设上海这边倾斜面光照是1250kWh/m2/年,综合效率为82%,那么这套系统的发电量为:
Ep=15*1250*82%=15375kWh。哇哦上海装一套15kW的系统一年可以发15375度电,还是不少的。当然光伏系统会有衰减,发电量会逐年下降。
这里光伏人常说的等效小时数就是光照*系统效率,假如等效小时数是1100,那么1kW的光伏系统,每年的发电量是1000度电,这样容易计算。(国内有最佳倾角的在一定系统效率下的等效小时数,这个发电量只在最佳倾角无阴影的情况下假定的系统效率下才能做到,有较方便的参考意义,但是当系统设计变化后,发电量肯定会变化,不能当成最终的发电量依据。)
这里有细心的朋友可能会质疑量纲不对,解释一下组件1W(瓦)是在辐照度1000W/m2,电池片温度25度的标准测试环境中测算出来的,以上公式可以理解为:
这里就简单的给大家介绍下发电量计算的过程,很多中间的细节没有深入,有需求的朋友可以留言交流,希望能够帮到大家。
光伏发电效率计算?
你是指光伏电站的设计发电量怎么计算吧?
光伏方阵机容量 * 等效日照时间 = 初始总发电量。
初始总发电量 * 方阵效率= 方阵发电量
等效日照时间的单位是 小时/每天。因此算出来得方阵发电量是日均发电量,算每年的,还要乘以365。
等效日照时间可以 用“年平均日照辐射量”/ 1000W 得到。
方阵效率 = (1-电缆线损)*设备效率*变压器效率*(1-灰尘影响)
方阵效率一般在70%~80%吧,可能70%没这么低,具体记不清了。应该去多少可以问一下有新能源资质的设计院。
太阳能发电能力如何计算?
1)组件面积——辐射量计算方法。
光伏发电站上网电量Ep计算如下:
Ep=HA×S×K1×K2式中:
HA——为倾斜面太阳能总辐照量(kW·h/m2);
S——为组件面积总和(m2)
K1 ——组件转换效率;
K2 ——为系统综合效率。
综合效率系数K2是考虑了各种因素影响后的修正系数,其中包括:
1) 厂用电、线损等能量折减
交直流配电房和输电线路损失约占总发电量的3%,相应折减修正系数取为97%。
2) 逆变器折减
逆变器效率为95%~98%。
光伏电池的效率会随着其工作时的温度变化而变化。当它们的温度升高时,光伏组件发电效率会呈降低趋势。一般而言,工作温度损耗平均值为在2.5%左右。
除上述各因素外,影响光伏电站发电量的还包括不可利用的太阳辐射损失和最大功率点跟踪精度影响折减、以及电网吸纳等其他不确定因素,相应的折减修正系数取为95%。
这种计算方法是第一种方法的变化公式,适用于倾角安装的项目,只要得到倾斜面辐照度(或根据水平辐照度进行换算:倾斜面辐照度=水平面辐照度/cosα),就可以计算出较准确的数据。
1MW屋顶光伏发电站所需电池板面积,一块235W的多晶太阳能电池板面积1.65*0.992=1.6368_,1MW需要1000000/235=4255.32块电池,电池板总面积1.6368*4255.32=6965_
理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率:=5555.339*6965*17.5%=6771263.8MJ=6771263.8*0.28KWH=1895953.86KWH=189.6万度
实际发电效率
太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时要考虑到0.95的影响系数。
随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件,当光伏组件内部的温度达到5 0-7 5℃时,它的输出功率降为额定时的8 9%,在分析太阳电池板输出功率时要考虑到0.8 9的影响系数。
光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%的影响,在分析太阳电池板输出功率时要考虑到0.93的影响系数。
由于太阳辐射的不均匀性,光伏组件的输出几乎不可能同时达到最大功率输出,因此光伏阵列的输出功率要低于各个组件的标称功率之和。
另外,还有光伏组件的不匹配性和板问连线损失等,这些因素影响太阳电池板输出功率的系数按0.95计算。并网光伏电站考虑安装角度因素折算后的效率为0.88。
所以实际发电效率为0.95 * 0.89 * 0.93*0.95 X*0.88=65.7%。
光伏发电系统实际年发电量=理论年发电量*实际发电效率=189.6*0.95 * 0.89 *0.93*0.95 * 0.88=189.6*6 5.7%=124.56万度
扩展资料:
太阳能的能源是来自地球外部天体的能源(主要是太阳能),是太阳中的氢原子核在超高温时聚变释放的巨大能量,人类所需能量的绝大部分都直接或间接地来自太阳。
我们生活所需的煤炭、石油、天然气等化石燃料都是因为各种植物通过光合作用把太阳能转变成化学能在植物体内贮存下来后,再由埋在地下的动植物经过漫长的地质年代形成。此外,水能、风能、波浪能、海流能等也都是由太阳能转换来的。
太阳能光发电是指无需通过热过程直接将光能转变为电能的发电方式。 它包括光伏发电、光化学发电、光感应发电和光生物发电。?
光伏发电是利用太阳能级半导体电子器件有效地吸收太阳光辐射能,并使之转变成电能的直接发电方式,是当今太阳光发电的主流。在光化学发电中有电化学光伏电池、光电解电池和光催化电池,目前得到实际应用的是光伏电池。
光伏发电系统主要由太阳能电池、蓄电池、控制器和逆变器组成,其中太阳能电池是光伏发电系统的关键部分,太阳能电池板的质量和成本将直接决定整个系统的质量和成本。太阳能电池主要分为晶体硅电池和薄膜电池两类,前者包括单晶硅电池、多晶硅电池两种,后者主要包括非晶体硅太阳能电池、铜铟镓硒太阳能电池和碲化镉太阳能电池。
单晶硅太阳能电池的光电转换效率为15%左右,最高可达23%,在太阳能电池中光电转换效率最高,但其制造成本高。单晶硅太阳能电池的使用寿命一般可达15年,最高可达25年。多晶硅太阳能电池的光电转换效率为14%到16%,其制作成本低于单晶硅太阳能电池,因此得到大量发展,但多晶硅太阳能电池的使用寿命要比单晶硅太阳能电池要短。
太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。
目前从民用的角度,在国外技术研究趋于成熟且初具产业化的是"光伏--建筑(照明)一体化"技术,而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。
太阳能发电系统主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。
太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。
太阳能是太阳内部连续不断的核聚变反应过程产生的能量。地球轨道上的平均太阳辐射强度为1,369w/_。地球赤道周长为40,076千米,从而可计算出,地球获得的能量可达173,000TW。在海平面上的标准峰值强度为1kw/m2,地球表面某一点24h的年平均辐射强度为0.20kw/_,相当于有102,000TW 的能量。
尽管太阳辐射到地球大气层的能量仅为其总辐射能量的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤,每秒照射到地球的能量则为1.465×10^14焦。
地球上的风能、水能、海洋温差能、波浪能和生物质能都是来源于太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。
缺点
(1)分散性:到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1,000W左右;若按全年日夜平均,则只有200W左右。
而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。
(2)不稳定性:由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。
为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来,以供夜间或阴雨天使用,但蓄能也是太阳能利用中较为薄弱的环节之一。
(3)效率低和成本高:太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。但有的太阳能利用装置,因为效率偏低,成本较高,现在的实验室利用效率也不超过30%,总的来说,经济性还不能与常规能源相竞争。在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。
(4)太阳能板污染:现阶段,太阳能板是有一定寿命的,一般最多3-5年就需要换一次太阳能板,而换下来的太阳能板则非常难被大自然分解,从而造成相当大的污染。