大家好!今天让小编来大家介绍下关于国电光伏砷化镓设备_太阳能电池板是怎样将光能转化为电能的的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.从五十年后或更远的将来看,什么能源会成为主流能源?2.太阳能电池板是怎样将光能转化为电能的
3.简述太阳能电池的制造工艺及其系统设备构成拜托各位了 3Q
从五十年后或更远的将来看,什么能源会成为主流能源?
我认为主要能源的话,我感觉会变成太阳能,因为在现在我们就有很多的地区实行了太阳能的发电,而在未来的50年,和或者是更远的未来的话,科技技术会变的越来越发达,而且使用太阳能会减少对环境的污染,所以我觉得他会成为我们更为主要的资源。
太阳能电池板是怎样将光能转化为电能的
光伏产业概述
目前人类能源消费结构中,石油、煤炭、天然气、铀等矿物资源占到了人类能源供给量的80%以上。但常规矿物质能源储量有限,如果无节制的开采,全球将很快面临能源短缺危机。另外常规矿物质能源使用后排放大量的CO2、SO2、核废料等威胁着人类生存环境。近年来,全球性的气候变暖,两极冰川融化,海平面上升,自然灾害频繁发生,生物多样性消失,酸雨范围越来越广,高空臭氧层空洞扩大等现象,都是因为人类大量使用并依赖传统能源所造成。
资料来源:中国可再生能源发展战略研讨会论文集
图表1 世界及中国主要能源资源使用年限
发展环保可再生能源是解决上述问题的最有效途径,也是人类能否在地球上永续生存下去的关键要素。在诸多可再生能源中,太阳能是唯一可以大量替代传统能源的能源。而在太阳能产业中,光伏产业由于其具有的诸多优点,是可再生能源中发展最快的产业,无疑也是最具有发展前景的产业。
资料来源:IEA(国际能源署)报告《Renewable Information2010》
图表2 1990~2008年世界可再生能源供给的年增长率
一、光伏产业的特点
太阳能是唯一能够保证人类未来需求的能量来源。光伏发电是利用太阳能将光子转化为电子的一个纯物理过程,转化过程不排放任何有害物质,其特点如下:
充足性:据美国能源部报告(2005年4月)世界上潜在水能资源4.6TW(1TW=1012W),经济可开采资源只有0.9TW;风能实际可开发资源2~4TW;生物质能3TW;海洋能不到2TW;地热能大约12TW;太阳能潜在资源120000TW,实际可开采资源高达600TW。
安全性:运行可靠、使用安全;发电规律性强、可预测(调度比风力发电容易)。
广泛性:生产资料丰富(地壳中硅元素含量位列第二)、建设地域广(荒漠、建筑物等)、规模大小皆宜。
免维护:使用寿命长(20~50年、工作25年效率下降20%)、免维护、无人值守。
清洁性:无燃料消耗、零排放、无噪声、无污染、能量回收期短(0.8~3.0年)。
二、光伏产业发展历程
世界上最早开始研究太阳能要追溯于1839年法国物理学家贝克勒尔首次发现光伏效应,并由爱因斯坦在1904年对其做出了理论解释,且很快得到实验证实;1954年美国贝尔实验室制成第一个单晶硅光伏电池;1959年第一个光电转换效率为5%的多晶硅光伏电池问世; 1960年,晶硅光伏电池发电首次并入常规电网;1969年世界上第一座光伏发电站在法国建成;1975年美国制作出非晶硅光伏电池;1980年代初,光伏电池开始规模化生产;1983年美国在加州建立了当时世界上最大的光伏电厂;1983年世界光伏组件产量达21.3MW(1MW=106W),光伏产业显露雏形。1990年以后,在能源危机和全球气候变暖的压力下,可再生能源越来越受到关注,德、美、日等国政府相继提出了光伏发电的“光伏屋顶计划”、“新阳光计划”等,在政府的政策法规和行动计划推动下,全球光伏产业以一个朝阳产业的面貌高速成长,同时太阳能光伏发电被誉为世界十种能源中发展最快的能源。
1990年以后全球光伏市场的发展和转移经过三个阶段。第一阶段,1996年之前,美国光伏市场占全球市场份额达32.1%,年复合增长率达25%,当之无愧地成为世界光伏市场中心。第二阶段,1996~2002年间,日本光伏市场保持了35%的年均增长,一跃成为光伏市场最大消费国,近年日本市场小幅回落,但销售的存量仍位居世界前列,2007年光伏电站存量达1GW(109W)左右。第三阶段,2003至今,欧盟成为绝对的市场主力,这得益于德国和西班牙等国的光伏补贴政策,快速刺激了欧盟市场中心的形成,目前我国有近80%的光伏产品出口至欧盟地区。
资料来源:EPIA(欧洲光伏产业协会,世界规模最大的太阳能光伏行业协会)
图表3 2009年光伏产品按地区安装比例
三、光伏发电技术发展趋势
目前已经进入商业化竞争的光伏发电产业按电池技术路线分类主要分为晶体硅光伏电池、薄膜光伏电池和聚光光伏电池。其中晶体硅光伏电池是目前发展最成熟的在应用中居主导地位。
太阳能电池根据所用材料的不同,还可分为:硅光伏电池、多元化合物薄膜光伏电池、聚合物多层修饰电极型光伏电池、纳米晶光伏电池、有机光伏电池等。
图表4 光伏电池分类及规模化生产转化效率
1.多元化合物薄膜光伏电池
多元化合物薄膜光伏电池材料为无机盐,其主要包括砷化镓III-V族化合物、硫化镉、碲化镉及铜铟硒薄膜光伏电池等。
硫化镉、碲化镉薄膜光伏电池的效率较非晶硅薄膜光伏电池效率高,成本较晶体硅光伏电池低,并且也易于大规模生产,但镉有剧毒,会对环境造成严重污染,因此并不是最理想的光伏电池。
砷化镓(GaAs)III-V族化合物光伏电池的转换效率可达40%。GaAs 化合物材料具有十分理想的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池。但是GaAs材料的价格不菲,因而在很大程度上限制了GaAs电池的普及。
铜铟硒薄膜光伏电池(简称CIS)适合光电转换,不存在光致衰退问题,转换效率也较高。具有价格低廉、性能良好和工艺简单等优点,将成为今后发展光伏电池的一个重要方向。唯一问题是材料来源,铟和硒都是稀有元素,因此这类电池的发展必然受到限制。
2.聚合物多层修饰电极型光伏电池
聚合物多层修饰电极型光伏电池以有机聚合物代替无机材料是刚刚开始的一个光伏电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本底等优势,对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备光伏电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是晶体硅光伏电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。
3.纳米晶光伏电池和有机光伏电池
纳米晶光伏电池转化效率可达10%,有机光伏电池转化效率可达6%,转换效率还比较低,这两类电池还处于研究探索阶段,短时间内不可能大规模商业化应用。
4.聚光太阳电池
聚光光伏电池最大优点就是高转换效率(30%~40%),以及较小的占地面积。聚光光伏发电系统主要由高效聚光太阳电池、高性能的聚光跟踪系统、有效的电池散热系统组成。由于高效聚光光伏电池的技术路线尚未定型,聚光光伏发电规模化产业链也未形成,高性能的聚光跟踪系统和有效的电池散热系统的成本控制难度大,因而聚光光伏发电暂无优势可言。
5.晶体硅光伏电池和薄膜光伏电池
关于“晶硅”和“薄膜”孰优孰劣的讨论也很多。从市场表现来看,05年起“薄膜”市场份额开始不断增加,到09年达到了18%(数据来源:Solarbuzz),趋势相当可观。而且正是从09年开始,发展“薄膜”的呼声也越来越高:一方面硅晶电池刚刚经历了“硅”价巨幅波动的事件导致各大厂家受损;另一方面,美国的FirstSolar公司异军突起,把薄膜电池推上了新高度。2010年,国内很多地方都上了薄膜项目,而一旦开始生产薄膜电池,问题也就暴露出来。
首先是技术门槛问题。“晶硅”技术经历了多年发展,已经进入成熟期,国内几个大型企业已经熟练掌握了晶硅电池的技术,并且有了自己的技术创新和突破。而薄膜电池则不同,技术仍在不断发展变化,特别是非硅薄膜电池技术,材料和工艺上都有很多技术难关,国内的大多数企业并不具备足够的水平,还都只是探索阶段,却要面临在薄膜电池技术领先的FirstSolar公司和已经技术成熟的晶硅电池双重压力,发展困难可想而知。
其次是资金门槛问题。薄膜电池的设备投入比晶硅电池大,而且所有配套设备都依靠进口。随着薄膜电池技术不断发展,生产设备也随之更新换代,很容易造成设备投资上的浪费。
近年来晶硅组件价格一路走低,与薄膜组件的价格已经很接近,薄膜组件的价格优势已不再明显。但“晶硅”对比“薄膜”仍然存在高的转换效率和较长的使用寿命的优势。事实上,一些原打算开展薄膜电池项目的企业,现在也都把项目放缓(尚德、英利),所以薄膜电池想要真的发展,还是需要一定的时间。
单晶硅光伏电池与多晶硅光伏电池相比转化效率高(单晶18~20%、多晶16~18%)、成本高,由于其成本控制难度大,全面胜出的可能性不大。
6.太阳能光热发电
除光伏发电外达到工程应用水平的还有太阳能光热发电。太阳能光热发电的建设和运行门槛很高,我国在太阳能光热发电部件研发上还几乎是空白:曲面反光镜,高温真空管,有机朗肯循环发电机组,斯特林发电机组等。此外,与光伏发电不同,光热发电对于环境也有更高要求:必须直射光,而且需要水冷却,这样在荒漠地区,就无法满足。我国目前太阳能光热发电尚处于研究示范阶段,光热发电与常规电厂结合成互补电站,独立稳定工作的不多(示范项目:江苏江宁县70kW示范电站,863计划北京延庆1MW实验电站)。由于技术障碍,我国在5~10年内都会处于试验示范阶段,光热发电不会成为主导潮流。
结论
从技术成熟度、转化效率及材料来源几方面综合判断,未来5~10年太阳能发电技术占主流的仍为晶体硅(以多晶硅为主)和非晶硅薄膜光伏技术。目前市场占有率:多晶硅电池52%,单晶硅电池38%,非晶硅薄膜电池8%,其他化合物薄膜电池2%。发展非晶硅薄膜光伏技术,还不宜盲目扩大规模,还是应该重点放在研究上,深入掌握核心技术。
简述太阳能电池的制造工艺及其系统设备构成拜托各位了 3Q
太阳能电池板是通过吸收太阳光,将太阳辐射能量经过光电效应直接或光化学效应间接转换成电能的设备组件。属于节能环保的发电产品,近几年得到了快速发展及推广,广泛运用在大型光伏发电站建设、家庭分布式太阳能发电系统、移动设备充电产品、航天航空科技领域。
一、太阳能电池板的主要由以下几部分组成
1、电池片,太阳能电池板所使用的电池片可以区分种类。主要有单晶硅、多晶硅、非晶硅,其中单晶硅和多晶硅电池的生产设备、技术简单,产品转化率较高,但消耗大量硅材料及损耗,所以电池片的成本也高。而非晶硅电池也叫薄膜太阳能电池,有非晶硅锗、铜铟镓硒、砷化镓、碲化镉等,由于生产工艺较为复杂,设备、技术成本相对较高,但因为不使用硅材料,电池片成本很低,光电转化效率已达到晶硅水平,甚至砷化镓等以超过31%大量使用在航天卫星等高端领域,而且弱光发电性能好,在灯光下也可发电,轻薄柔软等特性也是晶硅电池无法实现的。
2、保护电池片的封装材料,晶硅电池不能弯曲,必须使用90%以上高透光率的超白钢化浮法玻璃,薄膜太阳能电池可使用塑料和超白钢化浮法玻璃。
3、透明EVA材料,用于粘接固定保护电池片的封装材料和电池片。EVA材料的质量好坏直接影响太阳能电池板的使用寿命,但在购买时又不易明显区分优劣,所以选购大品牌的太阳能电池板相对有保障。
4、其他包括接线盒、密封硅胶、保护层压件等等。
二、太阳能电池板的应用领域
1、太阳能光伏电站、商业楼宇玻璃外墙发电、居民家庭分布式太阳能发电等大中小型发电系统。
2、新能源汽车、无人机、卫星、户外移动充电设备。
3、公交站、公园凉亭、路灯、交通灯、信号塔等。
4、救灾设备供电系统、离岸操作平台供电系统等
三、太阳能电池板的发电原理
太阳光线照射太阳电池表面时,一部分光子被硅材料或被铜铟镓硒等材料吸收;光子的能量传递给了硅原子等,使电子发生了跃迁,成为自由电子在P-N结两侧集聚形成了电位差,这事若接通电路时,在该电压的作用下,使电流流过电路产生一定的功率输出,也就是光子能量转换成电能的过程。
文章来源:中益兴业薄膜太阳能技术专家
太阳能电池的结构工作原理和制造技术 近几年来,受世界太阳能电池发展“热潮”的影响,我国太阳能电池产业发展空前高涨,本文收集了太阳能电池的一些有关技术,以供读者参考。(一)太阳能电池的发展历史: 太阳能电池是产生光生伏打效应(简称光伏效应)的半导体器件。因此,太阳能电池又称为光伏电池,太阳能电池产业又称为光伏产业。 1954年世界第一块实用化太阳能电池在美国贝尔实验室问世,幷首先应用于空间技术。当时太阳能电池的转换效率为8%。1973年世界爆发石油危机,从此之后,人们普遍对于太阳能电池关注,近10几年来,随着世界能源短缺和环境污染等问题日趋严重,太阳能电池的清洁性、安全性、长寿命,免维护以及资源可再生性等优点更加显现。一些发达国家制定了一系列鼓舞光伏发电的优惠政策,幷实施庞大的光伏工程计划,为太阳能电池产业创造了良好的发展机遇和巨大的市场空间,太阳能电池产业进入了高速发展时期,幷带动了上游多晶硅材料业和下游太阳能电池设备业的发展。在1997-2006年的10年中,世界光伏产业扩大了20倍,今后10年世界光伏产业仍以每年30%以上的增长速度发展。世界太阳能电池的发展历史如表1所示:表1 世界太阳能电池发展的主要节点 年份 重要节点 1954 美国贝尔实验室发明单晶硅太阳能电池,效率为6% 1955 第一个光伏航标灯问世,美国RCA发明Ga As太阳能电池 1958 太阳能电池首次装备于美国先锋1号卫星,转换效率为8%。 1959 第一个单晶硅太阳能电池问世。 1960 太阳能电池首次实现并网运行。 1974 突破反射绒面技术,硅太阳能电池效率达到18%。 1975 非晶硅及带硅太阳能电池问世 1978 美国建成100KW光伏电站 1980 单晶硅太阳能电池效率达到20%,多晶硅为14.5%,Ga As为22.5% 1986 美国建成6.5KW光伏电站 1990 德国提出“2000光伏屋顶计划” 1995 高效聚光Ga As太阳能电池问世,效率达32%。 1997 美国提出“克林顿总统百万太阳能屋顶计划日本提出“新阳光计划” 1998 单晶硅太阳能电池效率达到24.7%,荷兰提出“百万光伏屋顶计划” 2000 世界太阳能电池总产量达287MW,欧洲计划2010年生产60亿瓦光伏电池。 (二)、太阳能电池的种类 (三)、硅太阳能电池的结构及工作原理硅太阳能电池的外形及基本结构如图1。基本材料为P型单晶硅,厚度为0.3—0.5mm左右。上表面为N+型区,构成一个PN+结。顶区表面有栅状金属电极,硅片背面为金属底电极。上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子——空穴对。各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。当光伏电池两端接一负载后,光电池就从P区经负载流至N+区,负载中就有功率输出。太阳能电池各区对不同波长光的敏感型是不同的。靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5-10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5 %左右。电池基体区域产生的光电流对红外光敏感,占80-90%,是光生电流的主要组成部分。 (四)、太阳能电池的制造技术晶体硅太阳能电池的制造工艺流程如图2。提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。 1、 具体的制造工艺技术说明如下:(1) 切片:采用多线切割,将硅棒切割成正方形的硅片。(2) 清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。(3) 制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。(4) 磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为0.3-0.5um。(5) 周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。(6) 去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。(7) 制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。(8) 制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3 ,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。(9) 烧结:将电池芯片烧结于镍或铜的底板上。(10)测试分档:按规定参数规范,测试分类。由此可见,太阳能电池芯片的制造采用的工艺方法与半导体器件基本相同,生产的工艺设备也基本相同,但工艺加工精度远低于集成电路芯片的制造要求,这为太阳能电池的规模生产提供了有利条件。(五)、太阳能电池的芯片尺寸:规模化生产太阳能电池的芯片尺寸分别为(103×103)mm2、(125×125)mm2、(156×156) mm2和(210×210)mm2的方片。目前的主流仍是(156×156)mm2,2007年将过渡到(210×210)mm2为主流芯片。最近德国已推出了代表国际最先进的(210×210)mm2硅片全自动生产设备。芯片的厚度也愈来愈薄,从→300→ 270→ 240 →210 →180 um,目前晶体硅片主要使用厚度为210—240um。(六)、太阳能电池的芯片材料及转换效率: 1、 晶体硅(单晶硅和多晶硅)太阳能电池: 2004年晶体硅太阳能电池占总量的84.6 %,生产技术成熟,是光伏产业的主导产品。在光伏产业中占据着统治地位。对于高效单晶硅太阳能电池,国际公认澳大利亚新南威尔士大学达到了最高转换效率为24.7%,目前世界技术先进产品转换效率为19-20 %。对于多晶硅太阳能电池澳大利亚新南威尔士大学多晶硅电池效率已突破19.8%,技术先进产品的效率为15-18 %。 2、 非晶体硅太阳能电池: α-Si(非晶硅)太阳能电池一般采用高频辉光使硅烷分解沉积而成。由于分解温度低(250-500 0C),可在薄玻璃、陶瓷、不锈钢和塑料底片上沉积1um厚的薄膜,且易于大面积化。非晶硅太阳能电池多数采用PIN结构,有时还制成多层叠层式结构。非晶硅太阳能电池大量生产的大面积产品的转换效率为10-12 %,小面积产品转换效率已提高到14.6%,叠层结构电池的最高效率为21 %。 3、 砷化镓(GaAs)太阳能电池: GaAs太阳能电池多数采用液相外延法或MOCVD技术制备,GaAs太阳能电池的效率可高达29.5%,一般在19.5%左右。产品具有耐高温和抗辐射特点,但生产成本较高,产量受限,主要用作空间电源。以硅片为衬底,拥MOCVD方法制造GaAs /Si异质结太阳能电池是降低成本很有希望的方法,最高效率23.3 %,GaAs 叠层结构的太阳能电池效率接近40 %。 4、 其他化合物半导体太阳能电池:这方面主要有CIS (铜铟硒)薄膜、CdTe (碲化镉)薄膜和InP(磷化铟) 太阳能电池等。这些太阳能电池的结构与非晶硅电池相似。但CIS薄膜一般厚度为2-3um,已达到的转换效率为17.7 %。CdTe薄膜很适合于制作太阳能电池。其理论转换效率达30 %,目前国际先进水平转换效率为15.8 %,多用于空间方面。2004年世界各种太阳能电池产量的种类分布如表2 表2 2004年世界各种太阳能电池产量的种类分布 序号 太阳能电池种类 总产量(MW) 百分比( %) 1 单晶硅平板电池 314.4 28.6 2 多晶硅平板电池 669.2 56.0 3 非晶硅(室内室外) 47.1 3.9 4 带硅电池 41..0 3.4 5 CdTea(碲化镉)电池 13.0 1.1 6 CIS (铜铟硒) 3.0 0.25 7 非晶硅/单晶硅电池 80.0 6.7 总量 1195.2 100 (七)、提高太阳能电池效率的特殊技术:晶体硅太阳能电池的理论效率为25%(AMO1.0光谱条件下)。太阳能电池的理论效率与入射光能转变成电流之前的各种可能损耗的因素有关。其中,有些因素由太阳能电池的基本物理决定的,有些则与材料和工艺相关。从提高太阳能电池效率的原理上讲,应从以下几方面着手: 1、 减少太阳能电池薄膜光反射的损失 2、 降低PN结的正向电池(俗称太阳能电池暗电流) 3、 PN结的空间电荷区宽度减少,幷减少空间电荷区的复合中心。 4、 提高硅晶体中少数载流子寿命,即减少重金属杂质含量和其他可作为复合中心的杂质,晶体结构缺陷等。 5、 当采取太阳能电池硅晶体各区厚度和其他结构参数。目前提高太阳能电池效率的主要措施如下,而各项措施的采用往往引导出相应的新的工艺技术。(1) 选择长载流子寿命的高性能衬底硅晶体。(2) 太阳能电池芯片表面制造绒面或倒金字塔多坑表面结构。电池芯片背面制作背面镜,以降低表面反射和构成良好的隔光机制。(3) 合理设计发射结结构,以收集尽可能多的光生载流子。(4) 采用高性能表面钝化膜,以降低表面复合速率。(5) 采用深结结构,幷在金属接触处加强钝化。(6) 合理的电极接触设计以达到低串联电阻等。 (八)、太阳能电池的产业链 (九)、上海太阳能电池产业概况:上海对于光电转换器件的研究起步于1959年。当时在中科院技术物理研究所和上海科技大学等单位作为光电探测器件课题进行研究。上世纪八十年代,上海仪表局所属的上海半导体器件八厂等单位生产小功率的兰硅光电池在市场上销售。八十年代后期,受世界太阳能电池产业迅速发展的影响,上海开始建立专业的太阳能电池芯片生产企业和专业的研究机构。近10年多来,随着我国太阳能电池“热潮”的到来,制造太阳能电池组件的企业纷纷建立,而且随着单晶硅和多晶硅材料供应紧张,许多小型的硅单晶企业也蜂涌而至。从上世纪九十年代以来,上海的太阳能电池产业逐步形成规模。目前,上海地区从事太阳能电池芯片、组件、硅材料和设备生产和技术研究的单位共20余个。其中,太阳能电池芯片制造的主要企业有上海太阳能科技有限公司、上海泰阳公司等。2006年中芯国际(上海)公司Fab 10建成投产,利用8英寸硅单晶硅片制造太阳能电池芯片,开创了上海利用8英寸多晶硅片制造太阳能电池的新范例。目前,上海太阳能电池芯片的产量在30-40MW左右。上海太阳能电池组件的生产企业共有10个左右。主要企业仍有上海太阳能科技有限公司和上海泰阳公司(与上海交通大学合作)等。目前上海太阳能电池组件的产量为50-70 MW左右。由于太阳能电池组件生产技术及设备要求较为简单,因此,太阳能电池组件生产企业中,有多家为民营企业。由于国内太阳能电池芯片供应不足,这些企业往往采用进口芯片组装后绝大部分返销境外,仅少数投放国内市场。近几年来,由于可提供太阳能电池芯片生产的硅单晶片和硅多晶硅片严重短缺,价格不断大幅度上升,例如2003年进口电子级多晶硅每公斤为22-25美元,而2006年进口同样多晶硅的价格上升200%至300%,有些经销商转手倒卖时,价格甚至抬高5至8倍。在这种情况下,许多中小型的硅单晶生产企业蜂涌而至。从上世纪九十年代以来,在上海及周边地区建立中小型太阳能电池硅单晶(或硅多晶)的生产企业达4至5个之多。上海通用硅有限公司和上海卡姆丹克公司(合资企业)是其中有代表性的企业。它们各具有许多直拉单晶炉,可以拉制5.5〃,6〃,6.5〃和8〃直径的硅单晶,形成了可供年产25——30MW太阳能电池芯片的市场。但是由于多晶硅原材料供应不足,这些企业拉制的硅单晶原材料只能供给生产20MW太阳能电池芯片所用。因此,硅材料缺乏已成为抑制上海(乃至全国)太阳能电池产业封装的瓶颈。因此,通过上海与外省市的合作发展多晶硅产业已是涉及到微电子产业和太阳能电池产业的战略问题。(十)中芯国际(上海)的经验:中芯国际(上海)为国内集成电路(或半导体器件)芯片制造企业开展太阳能电池芯片或组件生产走出了一条成功之路,从中芯国际(上海)Fab10投产的实践来看,证明了以下事实,即集成电路(或半导体器件)芯片制造企业太阳能电池芯片具有许多有利条件: ● 基本工艺相同; ● 废旧硅圆片可充分利用,有利于降低制造成本; ● 生产线设备基本上可用进口设备或国产设备节省投资; ● 太阳能电池芯片制造若延伸至组件制造,更有利于企业获得较好效益。但由于集成电路(或半导体器件)芯片制造企业的可利用的单晶硅片数量有限,因此当太阳能电池芯片生产规模扩大时必须考虑其他晶体硅的来源