大家好!今天让小编来大家介绍下关于光伏产品铜铟镓硒_第三代光伏发电技术的发电技术的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.太阳能光伏发电系统是由太阳能电池,蓄电池,逆变器,控制器组成。我想知道这四样东西的主要作用都是什么2.第三代光伏发电技术的发电技术
3.弱光下哪种太阳能电池效果好?
4.汉能太阳能薄膜发电电池使用寿命一般有多少年
太阳能光伏发电系统是由太阳能电池,蓄电池,逆变器,控制器组成。我想知道这四样东西的主要作用都是什么
太阳能发电系统的结构和工作原理
太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。目前从民用的角度,在国外技术研究趋于成熟且初具产业化的是"光伏--建筑(照明)一体化"技术,而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。
1 太阳能发电原理
太阳能发电系统主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。
1.1 太阳能电源系统
太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。
(1) 电池单元:
由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。 若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,就有"光生电流"流过,太阳能电池组件就实现了对负载的功率P输出。
理论研究表明,太阳能电池组件的峰值功率Pk,由当地的太阳平均辐射强度与末端的用电负荷(需电量)决定。
(2) 电能储存单元:
太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。
1.2 控制器
控制器的主要功能是使太阳能发电系统始终处于发电的最大功率点附近,以获得最高效率。而充电控制通常采用脉冲宽度调制技术即PWM控制方式,使整个系统始终运行于最大功率点Pm附近区域。放电控制主要是指当电池缺电、系统故障,如电池开路或接反时切断开关。目前日立公司研制出了既能跟踪调控点Pm,又能跟踪太阳移动参数的"向日葵"式控制器,将固定电池组件的效率提高了50%左右。
1.3 DC-AC逆变器
逆变器按激励方式,可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流
电逆变成交流电。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照
明负载频率f,额定电压UN等匹配的正弦交流电供系统终端用户使用。
2 太阳能发电系统的效率
在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围绕着加大吸能面,如双面电池,减小反射;运用吸杂技术减小半导体材料的复合;电池超薄型化;改进理论,建立新模型;聚光电池等。几种太阳能电池的转换效率见表1。
表1 几种太阳能电池的转换效率
实验室典型电池 商品薄膜电池
各种太阳能电池 ηmax(%) 各种太阳能电池 η(%)
单晶硅 24.4 多晶硅 16.6
多晶硅 18.6 铜铟镓硒 18.8
GaAs(单结) 25.7 碲化镉 16.0
a-si(单结) 13 铜铟硒 14.1
充分利用太阳能是绿色照明的重要内容之一。而真正意义上的绿色照明至少还包括:照明系统的高效率,高稳定性,高效节能的绿色光源等。
3.1 发电--建筑照明一体化
目前成功地把太阳能组件和建筑构件加以整合,如太阳能屋面(顶)、墙壁及门窗等,实现了"光伏--建筑照明一体化(BIPV)"。1997年6月,美国宣布了以总统命名的"太阳能百万屋顶计划",在2010年以前为100万座住宅实施太阳能发电系统。日本"新阳光计划"已在2000年以前将光伏建筑组件装机成本降到170~210日元/W,太阳能电池年产量达10MW,电池成本降到25~30日元/W。1999年5月14日,德国仅用一年两个月建成了全球首座零排放太阳能电池组件厂,完全用可再生能源提供电力,生产中不排放CO2。工厂的南墙面为约10m高的PV阵列玻璃幕墙,包括屋顶PV组件,整个工厂建筑装有575m2的太阳能电池组件,仅此可为该建筑提供三分之一以上的电能,其墙面和屋顶PV组件造型、色彩、建筑风格与建筑物的结合,与周围的自然环境的整合达到了十分完美的协调。该建筑另有约45kW容量,由以自然状态的菜子油作燃料的热电厂提供,经设计燃烧菜子油时产生的CO2与油菜生长所需的CO2基本平衡,是一座真正意义上的零排放工厂。BIPV还注重建筑装饰艺术方面的研究,在捷克由德国WIP公司和捷克合作,建成了世界第一面彩色PV幕墙。印度西孟加拉邦为一无电岛117家村民安装了12.5kW的BIPV。国内常州天合铝板幕墙制造有限公司研制成功一种"太阳房",把发电、节能、环保、增值融于一房,成功地把光电技术与建筑技术结合起来,称为太阳能建筑系统(SPBS),SPBS已于2000年9月20日通过专家论证。近日在上海浦东建成了国内首座太阳能--照明一体化的公厕,所有用电由屋顶太阳能电池提供。这将有力地推动太阳能建筑节能产业化与市场化的进程。
3.2 绿色照明光源研究
绿色照明系统优化设计,要求低能耗下获得高的光效输出,并延长灯的使用寿命。因此DC-AC逆变器设计,应获得合理的灯丝预热时间和激励灯管的电压和电流波形。目前处在研究开发中的太阳能照明光源激励方式有四种典型电路:①自激推挽振荡电路,通过灯丝串联启辉器预热启动。该光源系统的主要参数是:输入电压DC=12V,输出光效>495Lm/支,灯管额定效率9W,有效寿命3200h,连续开启次数>1000次。②自激推挽振荡(简单式)电路,该光源系统的主要参数是:输入电压DC=12V,灯管功率9W,输出光效315Lm/支,连续启动次数>1500次。③自激单管振荡电路,灯丝串联继电器预热启动方式。④自激单管振荡(简单式)电路等方式的高效节能绿色光源。
4 结束语
绿色能源和可持续发展问题是本世纪人类面临的重大课题,开发新能源,对现有能源的充分合理利用已经得到各国政府的极大重视。太阳能发电作为一种取之不尽,用之不竭的清洁环保能源将得到前所未有的发展。随着太阳能产业化进程和技术开发的深化,它的效率、性价比将得到提高,它在包括BIPV在内的各个领域都将得到广泛的应用,也将极大地推动中国"绿色照明工程"的快速发展。
第三代光伏发电技术的发电技术
太阳能薄膜电池的成本主要高在生产设备科技含量高、生产工艺复杂、产能还未跟上,但同时太阳能薄膜电池材料成本低、生产流程自动化等又降低了整体成本。要真正了解太阳能电池的成本还是需要在发电原理及生产工艺上去深入认识。
全球目前薄膜太阳能电池基本上分为:非晶硅薄膜电池、铜铟镓硒(CIGS)薄膜电池和碲化镉(CdTe)薄膜电池和砷化镓薄膜电池四种。
1、非晶硅电池板
非晶硅(a-Si)太阳电池是在玻璃(glass)衬底上沉积透明导电膜(TCO),然后依次用等离子体反应沉积p型、i型、n型三层a-Si,接着再蒸镀金属电极铝(Al).光从玻璃面入射,电池电流从透明导电膜和铝引出,其结构可表示为glass/TCO/pin/Al,还可以用不锈钢片、塑料等作衬底。非晶硅转换效率一般为5%-10%。
非晶硅太阳电池用料少,节约能源,成本低;弱光效应好,短波响应优于晶体硅太阳电池;温度系数低;非晶硅电池组件因遮挡引起的组件功率下降比晶体硅好很多;外观一致性好,适合建筑使用,不影响建筑美观。
但目前非晶硅组件比晶体硅组件效率低很多,非晶硅效率一般不超过10%,在建设大型光伏电站的时候要求占地面积会比晶体硅大,比较不适合对占地面积有严格要求的地区。
2、铜铟镓硒(CIGS)电池板
铜铟镓硒(CIGS)薄膜太阳能电池,由Cu(铜)、In(铟)、Ga(镓)、Se(硒)四种元素构成最佳比例的黄铜矿结晶薄膜太阳能电池,是组成电池板的关键技术。铜铟镓硒薄膜材料是属于Ⅰ-Ⅲ-Ⅵ2族化合物直接带隙半导体,光吸收系数达到105量级,薄膜厚度约为1-2μm就能吸收太阳光,大面积电池组件转化效率及产量根据各公司制备工艺不同而有所不同,一般在10%~15%范围内。
中益兴业铜铟镓硒薄膜太阳电池具有生产成本低、污染小、不衰退、弱光性能好等特点,光电转换效率居各种薄膜太阳能电池之首,接近晶体硅太阳电池,而成本则是晶体硅电池的三分之一,被国际上称为“下一时代非常有前途的新型薄膜太阳电池”。此外,该电池具有柔和、均匀的黑色外观,是对外观有较高要求场所的理想选择,如大型建筑物的玻璃幕墙等,在现代化高层建筑等领域有很大市场。
虽然CIGS电池具有高效率和低材料成本的优势,但他也面临三个主要的问题:(1)制程复杂,投资成本高(2)关键原料的供应不足(3)缓冲层CdS具有潜在的毒性。
3、碲化镉(CdTe)电池板
碲化镉(CdTe)薄膜电池是在玻璃或柔性衬底上依次沉积多层薄膜而形成的光伏器件。与其他太阳能电池相比,碲化镉薄膜太阳能电池结构比较简单,一般而言,这种电池是在玻璃衬底上由五层结构组成,即透明导电氧化物层(TCO层)窗口层、碲化镉(CdTe)吸收层、背接触层和背电极层。碲化镉薄膜电池的转换效率一般为8.5%~10.5%。
CdTe是一种II-VI族化合物半导体,吸收率高,仅1微米(μm)厚就可以吸收90%以上的可见光,是单晶硅的1/100,非常适合于制作成薄膜太阳电池的吸收层,是实现低成本和低能耗的重要前提。碲化镉薄膜太阳能电池组件的温度系数约为-0.25%/℃,比晶体硅太阳能电池低一半左右,所以,其发电量比标称功率相同的晶硅电池多,也更适合于高温环境。碲化镉薄膜太阳能电池组件的光谱吸收不覆盖水蒸汽的吸收峰,因此不会像晶硅组件一样在潮湿气候下发电输出下降。
碲化镉的一个主要缺点就是要用“非常的”材料来制造,镉是一种剧毒物质,能够像汞一样在食物链中积累,这就有悖于绿色、环境友好、安全无毒的理念。
薄膜电池材料消耗少、制备能耗低、组件生产可在一个车间内完成,成本优势明显。如果薄膜电池组件效率与晶硅电池相差无几,其性价比将是无可比拟的。在柔性衬底上制备的薄膜电池,具有可卷曲折叠、不拍摔碰、重量轻、弱光性能好等优势,加之光伏建筑一体化等分布式光伏的应用,将来的应用前景将会更加广阔。
目前最好的应属砷化镓薄膜太阳能电池,转化效率已经超过32%,详情可继续了解
文章来源:中益兴业薄膜太阳能技术专家
弱光下哪种太阳能电池效果好?
在了解第三代发电技术之前,我们先来了解什么是第一代与第二代光伏发电技术。简单地说,第一代光伏发电技术以晶体硅生产光电池为核心的技术;第二代光伏发电技术是指品种繁多的薄膜电池。
第一代光伏发电技术=晶体硅光伏发电,有单晶硅和多晶硅的差别。优点是光电转化率较高,缺点是售价较贵,生产多晶硅耗能较多,也容易污染环境。
第二代光伏发电技术=花式品种繁多的薄膜电池,优点是材料用量少,售价较低,重大缺点是光电转化率只有晶体硅的一半,占地面积也较多。主要品种有:1、非晶、纳米晶、微晶等硅薄膜。2、CIGS即铜铟镓硒组成的薄膜。3、TeCd碲化镉薄膜 。
从行业来看,发展光伏用晶体硅还是薄膜争论从未停息。但业内普遍认为,无 论第一代技术还是第二代技术,都存在高耗能、高污染的问题,而我推荐的第三代光伏发电技术则是一种完全“绿色”的光伏发电技术,其“绿色、高效、价廉、寿命长”等特点将改变光伏上游产业“两高”现状。具体地说,第三代光伏发电技术就是使用“太阳能炼硅+跟踪+聚光+高效聚光硅电池”技术发电。这是与第一代和第二代最本质的技术区别。
第三代光伏发电技术非常重要的一点就是绿色技术。它以太阳能炼硅为核心技术,所带来的污染基本等于零。太阳能炼硅的特点是利用太阳能,不是使用电能,尽管也是高耗能,但耗的不是化石能而是太阳能,从这个意义上讲,第三代光伏发电技术是具有革命性的。
汉能太阳能薄膜发电电池使用寿命一般有多少年
非晶硅。。。
楼主纠正下你的分类,目前来讲,太阳能光伏产品就分两类:晶硅、非晶硅。
晶硅:分单晶硅、多晶硅
非晶硅包括:硅基薄膜电池、碲化镉电池、铜铟镓硒电池、三砷化二镓(就是聚光电池)电池、染料敏化电池等等。。。
非晶硅电池组件对于波长在780nm以上的光源有一定光电转化能力,弱光发电特性突出,且制备成本相对晶硅电池低,但光电转换效率低,衰减后仅有7%上下,需要强调的是,在这个波长范围内晶硅电池组件是无法发生伏打效应的,就是说晶硅电池在这个波长范围内很难发电;
目前国内有生产并广泛应用在各类光伏小电子类产品上,如计算器、光伏玩具、草坪灯、太阳能钥匙扣等;
技术较为成熟的有硅基薄膜电池(国内代表厂家:福建钧石、天威、正泰、尚德、东莞宏威、蚌埠普乐、南通强生、深圳杜邦等)
碲化镉电池(代表厂家:美国firstsolar)
铜铟镓硒(代表厂家:美国nano、山东孚日、台湾有几家具体名字忘了)
不过上述厂家主要以生产大面积电池组件组装太阳能电站为主,估计你的采购量也达不到,建议你找找深圳的小光伏厂家,告诉他们你要小块薄膜电池组件,应该可以买到。比如深圳拓日、创益、日月环、庆丰光电等等。。
一般是10年。
薄膜太阳电池的光电转化效率并没有传统晶体硅电池转化效率高。薄膜太阳电池的转化效率之提升是太阳能科技界正在不断研究的主方向。截止目前,实验室中碲化镉薄膜太阳电池的光电转化效率已达21.5%。First Solar公司是全球最大的碲化镉太阳能电池组件生厂商,其计划在2015年内实现相关组件的效率达到16%。目前,铜铟镓硒薄膜太阳电池的效率也超过21%,相关组件的效率也将达到15%。
当前已经实现商业化的薄膜太阳电池主要有:碲化镉薄膜太阳电池、铜铟镓硒薄膜太阳电池、 非晶体硅薄膜太阳电池。