大家好!今天让小编来大家介绍下关于dc1500v光伏组件_dc1500v高压分配系统的组成特点的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.光伏发电支架怎样安装2.dc1500v高压分配系统的组成特点
3.光伏组件伏安特性异常
4.双玻组件_双玻组件数据
光伏发电支架怎样安装
光伏发电支架的安装是确保光伏组件稳定固定在地面或屋顶上的重要步骤。下面是光伏发电支架的一般安装步骤:
①. 确定安装位置:根据选址要求和光照条件,确定光伏发电支架的安装位置。这可能是在地面上,也可能是在屋顶上。
②. 准备支架材料:根据设计要求,准备支架所需的材料,包括支架架材、连接件、地脚螺栓等。
③. 安装地脚基础:如果是在地面上安装,需要先进行地脚基础的安装。根据设计要求,挖掘基础坑,然后浇筑混凝土,安装地脚螺栓。
④. 安装支架架材:根据设计要求,将支架架材按照预定的位置和角度进行安装。使用连接件将支架架材固定在地脚螺栓上。
科盛平面屋顶光伏支架案例
⑤. 安装光伏组件:根据设计要求,将光伏组件安装在支架上。使用连接件将光伏组件固定在支架上,确保稳固可靠。
⑥. 连接电缆:将光伏组件的输出电缆与逆变器或电网连接器进行连接。
⑦. 安装完善:检查支架和光伏组件的安装情况,确保没有松动或损坏的部分。进行必要的调整和修复。
⑧. 安全检查:进行安全检查,确保安装符合相关的安全标准和规范。确保安装过程中没有安全隐患。
以上是光伏发电支架的一般安装步骤。实际安装过程中,还需要根据具体情况进行细节调整和操作。建议在安装前,咨询专业工程师或相关技术人员的意见和指导,以确保安装的正确性和安全性。
dc1500v高压分配系统的组成特点
一、 灭弧主要部件
与整个灭弧过程有关的结构都在下图中有所体现。
假设直流系统中存在接地故障,保护装置驱动断路器分闸,此时静触头(1105)与动触头(1120)之间会产生电弧。其示意图如下图所示:
下面着重来说一下电弧如何进入灭弧罩的。
电弧一开始出现在主触头之间,此时通过右手定则,我们可以判断出电弧产生的磁场的方向。以电流为轴线,以上为纸面向外,以下纸面向内。
又由于金属栅片的磁阻远远小于空气,使得电弧电流周围区域内的磁通路径会发生改变。电弧上方的磁通大部分进入金属栅片,使得电弧上方的磁通比电弧下方稀疏。因此,下方的纸面向内的磁场起主导作用。
根据左手定则很容易判断出电弧受到向上的电磁力。它使得电弧脱离主触头,着落在引弧结构上(阳极为1115-1116,阴极为1192-1193)。至此,电弧已经进入了灭弧罩内。
接下来位于引弧结构上的电弧将上部连接排、电弧阳极(静触头侧)、电弧阴极(动触头侧)、短接棒(红圈部分)、下部连接排联通,这样直流系统就通过电弧构成了完整的回路。如下图所示:
? 此时电弧依然受到向上的电磁力,促使电弧沿着引弧结构移动至灭弧角(806),最终进入金属栅片中。
电弧被金属栅片分割成了许多串联的短弧,电弧电流的存在造成每一段短弧都有一定的压降,最终使得加在电弧两端的总电压变大。当电弧电压大于电源电压时,电源提供的能量小于电弧消耗的能量,使得电弧的温度变低,衰弱了电离的能力。
同时由于栅片间隙较小,使得电弧被一定程度上的压缩,使得电弧与冷状态的栅片接触面积增大,促使电弧冷却。
在上述作用的共同配合下,电弧电流将逐渐减小,最终熄灭电弧。
其灭弧原理图如下所示:
在UR40快速直流断路器中其栅片形状被设计成V字形,这可以使电弧进入栅片阻力减小,同时优化了磁路,增强电弧所受到的吸力。
金属栅片是整个灭弧罩中最重要的部分。栅片越多,电弧被分割的短弧就越多,电弧电压增大的越多,同时栅片冷却的面积也就越大,这些都有利于熄弧。
但是,当断路器尺寸确定后,栅片数量不能过大,栅片数大,片间间隙小,就会对电弧进入栅片时产生很大阻力,甚至使电弧不能进入,栅片会被烧损。
以工作电压1500V为例,最小电弧近极压降一般是25V,1500V需要60个间隙,除两极与栅片的间隙,共需58个间隙,应用59块栅片。
在金属栅片上部还设有绝缘栅片,通常是耐弧绝缘材料(如石棉、水泥、陶土、陶瓷、三聚氰胺板等)制成。绝缘栅片并不能切断电弧,但有良好的冷却作用。
金属栅片中的高温电离气体排至绝缘栅片后,通过栅片传导散热达到去电离作用。此外,绝缘栅片还有防止飞弧作用。
二、 灭弧部件实物图
针对上文中提到的结构,找了一些实物图,增加大家的理解。可以结合上文多比对,加深印象。
三、 城轨直流系统灭弧的特点
地铁由直流电机驱动,电动机是典型的电感负载。地铁供电系统呈感性,而且电感的值非常大。地铁牵引供电系统中的输电线路可以等效为一个电阻与电感的串联。其示意图如下所示:
电弧的高温会使得触头烧蚀甚至会造成开关电器着火或者爆炸。但电弧也有有利的一面,它能够提供一个释放电路中磁能的场所,使得产生的过电压大大降低。
这就是说电弧必须等电感中的能量完全释放后才能熄灭,断路器才能完全断开电路,否则将在电路中产生过电压,对其他电器设备造成危害。这款断路器当触头分断时,电弧到引弧结构后仍有回路接通(通过短接棒),不至于过早熄灭,避免了过电压的产生。
但由于地铁供电系统电感过大,导致了电弧熄灭时间较长,对触头等易耗部件的伤害较大。
四、 灭弧部件中的易损部件
当发生跳闸时,复送电前,需要仔细检查动触头、静触头、限弧板、引弧结构、灭弧角、金属栅板、绝缘栅板。
其中引弧结构由多个零部件组合而成,上文为了叙述方便,使用了统称。下面结合实物图对其进行分解。
从上述中我们可以看出,阳极引弧结构其实就是静触头总成,而阴极引弧结构则是由电极和灭弧芯组成。电极及静触头总成下部垫着MU金属条,至此相关零部件介绍完毕。
这些易损部件的更换标准如下:
1、动触头、静触头、电极、MU金属条
以W2值为标志,新主触头的W2尺寸应为8±1mm。当W2≦3±1mm时,需更换上述部件。其测量方法如下图所示:
上图中1为合闸装置,2为导管(用于安装附件)。
注:吹弧芯并不属于易损部件。
2、限弧板
当局部烧伤痕迹达到初始厚度(12mm)的一半时。
3、灭弧角
当局部烧伤截面达到初始截面(20*4mm2)的一半时时。
4、金属栅板
当两块金属栅板之间互相接触时或当金属栅板的(1)部分的烧损高度达到原始高度的一半时。(1)部分如下图所示:
5、绝缘栅板
当烧损深度达到部件原始厚度的一半时或当出现垂直裂缝时
五、 总结
从上文中可以看出,为了达到灭弧的目的,断路器往往是多种灭弧结构的组合。
在这款断路器中通过触头分离的机械力及电弧产生的磁场对自身的电动力拉长电弧,再通过金属栅板来形成若干短弧增大电弧电压使得电弧熄灭。高温电离气体排至绝缘栅板中降温去电离,防止复燃。
但该型断路器仍有一定的缺陷,便是如果断路器电流回路中偏小,电流产生的力较小,电弧很容易停留在触头上,使触头烧损。
写到这里,突然下复习一下大学的知识,把电弧的来龙去脉捋顺一下。又要打好多字了,心疼我的键盘!!下篇文章见了。
光伏组件伏安特性异常
1、直流电源:这是系统的核心部分,为整个系统提供直流电。这种电源通常是可调的,以便在不同的负载条件下保持稳定的电压输出。
2、高压电缆:这些电缆用于将直流电源与分配器连接起来,以确保电流的有效传输。
3、断路器:这些设备用于在系统出现故障时断开电流,以防止进一步的损坏。它们通常包括手动和自动两种类型。
4、熔丝:这些组件用于防止电流过大,从而保护系统免受损害。当电流超过特定阈值时,熔丝会熔断,从而中断电流。
5、分配器:这些设备用于将高压电源分配到各个设备或电路中。它们的设计可以提供多路输出,以适应不同的负载条件。
6、绝缘材料:绝缘材料用于保护系统的各个组成部分免受电击和短路的影响。高压电缆通常使用特殊的绝缘材料,如橡胶或聚合物。
7、监控和保护系统:这些系统用于实时监控系统的运行状态,并在出现故障或异常情况时发出警报。它们可能包括温度传感器、电流传感器和电压传感器等。
双玻组件_双玻组件数据
您要问的是光伏组件伏安特性异常的原因吗?开路电压异常、短路电流异常等。
1、当光照条件下,光伏组件的开路电压(即输出电流为0时的电压)明显偏低。这是由于组件内部存在电路故障,导致电流无法正常流动。
2、当光照条件下,光伏组件的短路电流(即输出电压为0时的电流)明显偏低。这是由于组件内部存在损坏的电池单元或连接线路,导致电流无法正常输出。
双玻组件数据
这个项目可能也是不是特别好说,这是哪个公司的项目,这是一个非常严谨实测数据,这个数据在双玻和普通组件同样用的是科士达逆变器和阳光逆变器情况下,拿到的一年以后实测发电量,得出的结论是什么? 双玻组件发电量不管是在集中式还是组串式逆变器下,双玻组件发电分别高出2.86%和2.94%,这是到现在为止我们认为监控几百兆瓦里有规模有同等比较的条件,有说服力的数据。这点也是我们最近收集起来的资料,一年以后温度的差异,热斑对组件造成的影响,双玻明显小很多,这方面也比较容易理解,难免会因为各种各样的原因组件出现热斑。双玻组件有更好的导热性、传导性,即便温度相对集中的地方也更容易分散,即便在双玻组件中出现热斑的影响,比较起来真正对组件造成的影响,双玻要小一点。我个人觉得有影响,但不是特别的突出,我也是非常客观的看。
最后一点,这点应该是在今天或者明天的论坛还有别的一些企业也会提到,我个人认为1500V 组件系统可能在明年将有非常高速的发展,我们前几天看到了一个国家通知,补贴要下调,我们初步估计一类地区降5分,我们要想达到同等的收益,可能我们系统的成本要降低4.5到5.5元,一般我们说0.4元。从我们组件端来说,每年几乎可以在不增加成本基础上依靠转化率的提高,每年提高5瓦或者每年提高2%到3%的转化效率,今年我们在市面上买到的组件是255、260。第二方面依靠于设计工艺上。第三电气方面的下降,像阳光不断推出大功率的逆变器。1500V 系统,大家最简单的理解,汇流箱少了三分之一,电线电缆少了三分之一,逆变器容量增大了,单瓦成本也会下降。还有变压器也少了三分之一,运维和成本也减少了。我个人蛮自豪的说,我们是今年第一个在这个行业呼吁里1500V 的人。1500V 难在什么地方,因为是系统工程,不是阳光能做出1500V 逆变器就可以了,中间还有一个挑战,中国至今还没有光伏1500V 的设计标准,我们走访了很多设计院,我们可以借鉴直流端的煤矿行业等,应该说我们走访下来,包括电线电缆,所有工艺都已经齐备。美国最开始做1500V ,后面印度,像中国技术升级很大程度上也应该积极去推进,去摸索。我认为在明年整个光伏行业都应该高度重视1500V 的发展。1500V 对于组件的挑战,原来是背板的问题,不管是双玻还是1500V 在明年可能会立竿见影减轻我们的成本。比如1500V 就能降0.2元,我们说转化效率的提升又能降5分,别的地方我们在设计方面等等方面,再能降0.15、0.2元,包括其他设备费用的下降,我觉得还是比较乐观。只有不断地创新,不断地通过技术进步,才能真正拉低我们的成本。
这是在2014年天合做的海南双玻项目,主要考虑的是高温高湿。这是西双版纳50兆瓦的双格项目,都是茶园,这个项目主要考虑的昼夜温差非常大,对背板挑战非常大。这个项目考虑比较多,业主方提出抗风的要求,因为普通组件在屋顶上曾经出现过台风对组件的破坏。这是河南信阳7.6兆瓦的双玻项目,宿迁60兆瓦项目,印度200千瓦的项目,印度对双玻项目非常重视,集中大的项目还没有,最大的可能也就10兆瓦左右,基本我们合作的所有公司都在小规模用双玻来观察一些数据。
我们说双玻组件的优势,概括起来是三个,所有的优势来自于结构的三个方面,没有边框,没有背板,还有三明治结构,它的好处也来自于三个方面,更多收益,更可靠,更环保。总体来看,我觉得双玻组件会有更少的一些衰减,带来更多的收益,不管是抗风沙还是抗PID 还是抗氨气有更好的稳定性,在价格方面,双玻组件和普通组件几乎是一个价格,从天合来讲,我们把双玻组件作为普通组件的一种替代品。光伏行业不断要求降本增效,不断要求和传统火电竞争的背景下,我希望全行业携起手来,我觉得我们真正的对手不是行业内的厂家,我们真正的对手是传统的化石能源。“成本不高,更环保”,这才是我们光伏人扬眉吐气,真正过好日子的那一天,谢谢大家。
图:天合光能有限公司销售总监曾义发表主题演讲《双玻组件如何提高电站收益率》 曾义:各位来宾,各位光伏界的同仁,大家下午好。我在来的路上想了想,今年是我第六次讲双玻的话题,一方面我也怕各位听的烦,第二方面我每次都要竭尽所能把个话题更加详尽的想清楚。天合今年花了这么多功夫在双玻组件的推广,除了看到双玻组件在耐用性、衰减方面的贡献,我们整个光伏界所有同仁应该都看到一点,我们光伏真正的未来,真正的飞越还是有一天能够平价上网。我们畅想一下到2025年,光伏行业必须和火电成本相媲美,这才是我们真正光伏行业发展真正能够飞跃的时机。我一直认为光伏行业整个行业必须有最
大的勇气和热情拥抱挑战和创新,不断创新是我们这个行业最大的源动力。我们整个光伏行业应该要有更多的勇气去接受去尝试去探索新的产品新的工艺。
今天第七次和行业内同仁分享我们对双玻的一些认识。这张图是新的,不管讲到什么产品,我们都要首先看一下产品的发展渊源,双玻我个人认为不是真正的新产品,可能从光伏组件在中国应用开始,双玻组件就开始出现了。第一个阶段双玻组件主要用月BIPV 和BAPV ,第二个阶段主要是功能上的应用,比如像青岛昌盛在双玻产品应用方面,第三个阶段从2014年开始进入大规模的应用,我们从2014年开始,海南中电有一个20兆瓦的双玻大型地面电站。当时的考虑在2014年开始更多是看到了双玻组件在高温高湿及PID 方面的一些功能。我相信从2016年开始,双玻另外一方面的功效,比如1500V 系统应用,在电压方面有更好的表现。双玻组件应用多样性,主要是抗水汽、抗盐雾,第二方面在西北抗紫外线抗封杀,第三方面是农业光伏方面,华中地区农业项目像抗水汽,调光保温,还有像欧洲抗氨气。第四方面是屋顶光伏,这方面应用的项目比较少,但逐步大家也意识到在清洗运维方面的优势。
说到双玻的可靠性,这个地方我稍微打乱一下,我觉得双玻组件不同于别的组件,一个没有背板,第二没有边框,普通组件背板都是自然界老化因子,包括高温高湿都对背板有影响,但是不能说背板不能达到25年的使用条件,从双玻来说,大家对玻璃很容易理解,一般的只要不是强碱,基本没有影响。从组件构造方面,可以非常明显的看到这点。在接下来
的报告加上我们实际应用一、二、六年以后的数据和实测的数据和大家分享,更能够帮助大家进一步的去认识双玻的一些特点。普通组件要接地,双玻在这方面很大一个好处不用接地,施工起来成本也会便宜1到2分钱。我们把双玻表面覆盖导电的铝箔膜在上面,再做热循环,做了以后同样看PID 成果,大家可以一目了然,上面的常规组件做了600个小时实验以后,明显的变黑,双玻组件在600个小时以后,即使加上表面导电的铝箔以后,我们可以看到稍微有一两个电池发黑,这是明显的差异。这是耐风沙打磨性能,在沙尘较大的地区,如果使用普通组件,其背板的最外层会受到磨损,影响外观及性能,因此,将双玻和普通组件进行耐磨损的相关实验验证。
闪电纹和蜗牛纹,到现在为止我们天合还没有发现蜗牛纹、闪电纹会直接加速组件的衰减,但是看起来很不爽。它们的成因是两方面,一个是隐裂,一个是水透。双玻还有一个优势,没有边框,可以看到不积灰不积雪,易清洗管理,减少运维费用。大家知道电磁板所有电池都是串联的,一块的阻挡就会导致整个组件发电量的减少,而减少是非常明显的。双玻组件因为没有边框的遮挡,灰尘都很容易被冲下去。特别是在西北地区,下雪以后,我们在天合常州实验室做了一个实验,这边双玻组件沉积1.5米以后,雪自然坍塌。这部分是讲双玻抗隐裂性能,双玻强度相同,结构相同,厚度相同的玻璃,应力分散方面非常的均匀。我们说三明治结构,对于减少应力,减少风载雪载的能力有明显提高。这张图是我们做了一个实验,薄膜组件、普通组件和双玻组件,在支架沉降15厘米以后,一个光照的情况,在14天以后的对比,薄膜组件出现破损,可能和薄膜组件本身结构有关系,我们双玻组件和普通
组件基本是3厘米左右,普通组件有4、5厘米的边框,双玻组件是5
毫米的结构,它的稳定性,普通组件在位于150毫米以后,明显出现外力性隐裂现象,双玻组件几乎不会出现,理论是什么? 我们就专门双玻组件和普通组件在1500帕变形情况下,它的应力分析。我们最左边的图是普通组件,同样的5400帕可以发现在组件中间部位发生了变形,而双玻组件最强的部分虽然集中在中间,但是是横向分散的,所以同样在4500帕雪载下面,双玻组件中间点最大形变只有1.6厘米。我们也知道变形越少,其中可能产生隐裂的风险就会越少
最近广东台风可能引起了大家对屋顶项目支架的抗风能力或者牢固性的关注,我觉得这个关注都只看到了台风对组件显性的影响,我们测过海南的项目,应该是14级台风,某些点风力略微大于14级,即使支架没有变形,但是隐裂变化已经非常严重。我们行业还没有达到最终解决方案的那一天,问题不断有,靠的就是所有光伏界供应商、设计单位、研发单位共同一个一个克服问题,可能双玻是在某一个方面的解决方案。这是我们天合内部做的一个机械载荷实验,我们可以看到左边的图,这个变形已经达到了12厘米,中间吸盘拉手一直在动,想模拟在强台风过程中不断震颤对组件的影响,双玻组件检测前和检测后,在12厘米相对于每小时140公里风速下持续的颤动,没有发现一片隐裂的出现。双玻还有一个优势,阻燃的效果,双玻组件可以达到Class A,现在我们分布式和屋顶式都越来越多,不能说有一些组件不安全,但是每隔一两年可以在全球报告中看到光伏电站火灾的一些影响,美国计划明年要推出所有居民屋顶上的组件,要达到Class A放火等级,我们中国要求还没有这么高,但是也不能说普通组件有这么大的危害性,但是双玻组件在这方面表现的更好一些。
这是在可靠性方面的一些实验数据,今天的PPT 更多注重实证数据方面的影响,以前大家对双玻组件没有那么多的认识,更多是感性定性的报告,今天分享更多的是数据方面的东西。
我们对14片组件进行可靠性实验,把所有IEC 标准提高了3倍,不管是热循环、冷热,所有的都做过实验,最大的衰减6%。这是第三方测试的情况,高于IEC 国际标准3倍条件的测试。双玻能够更好地起到密封的作用,阻水的作用,抗风沙的作用,它的衰减就要明显低于普通组件。在中国天合销售出去的双玻组件已经达到了300兆瓦,我们一直在跟踪,一两年之前为什么没有那么多数据拿出来,我们觉得真正的实测数据才能代表双玻组件的表现。从我们真正验证实测数据来看,比我们现在承诺每年衰减0.5%还要更加乐观。
我们还有一个观点,包括一些金融机构,在评估我们电站的时候,还提了一个新的说法,叫表外收益,可能不是非常的普遍,我们现在的财务分析,指的是20年有补贴,在很多地方如果电站长期存在,即便低于80%转化效率还可以发电有收益,没有国家的4.2元补贴,但是同等于脱硫煤电价的存在。