大家好!今天让小编来大家介绍下关于全智能光伏电站供电集成_太阳能全智能控制器的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.安装光伏发电系统需要系统集成吗2.太阳能全智能控制器
安装光伏发电系统需要系统集成吗
1月18号国家能源局发布了《关于分布式光伏发电项目管理暂行办法的通知》(国能新能〔2013〕433号),这是一个业界翘盼的分布式光伏项目备案管理办法细则文件。其中第17条提到了关于分布式光伏设计、施工的资质要求,但只是很笼统的一带而过,让人不明所以。分布式光伏发电项目的设计和安装应符合有关管理规定、设备标准、建筑工程规范和安全规范等要求,承担项目设计、查咨询、安装和监理的单位,应具有国家规定的相应资质。“国家规定的相应资质”到底是些什么资质呢?分布式光伏系统集成从施工来看,有点近似于家装,在屋顶安装光伏设备、铺设电缆、连接并网。作为一个新行业,好像目前还没有具体的资质规定。由于是建筑物上安装光伏设备,系统还要连接并网,所以承接方至少需要基本的建筑装修、家庭电网、光伏系统等基本知识。光伏系统是否能牢固地固定,对原有建筑防水和承重是否有影响,光伏发电是否符合电网的并网质量要求,这些都关系到业主房屋的安全性,发电对电网的冲击,系统的工作效率和寿命。所以分布式光伏的资质确实需要规范。另一方面,对于小型分布式项目的资质要求不易过高。家庭分布式项目大约3-5KW,成本不会超过6万元。而一个甲级或者乙级的设计院出一张设计图可能就需要5万元。显然要求项目的设计施工资质太高就会完全超出用户的承受能力,不必要的提高建设成本,障碍分布式光伏进入家庭市场。建议可以按照项目规模分几个资质档次要求:<300KW, 300KW< &<1MW,>1MW。对于小于300KW的项目,参照基本家装资质即可。
太阳能全智能控制器
第1章 太阳能资源
1.1 太阳能利用的必要性与利用方式
1.2 太阳能资源的特点
1.3 衡量太阳辐射的指标
1.3.1 辐照度
1.3.2 光谱强度分布
1.3.3 直射辐射(直射光/平行光)与散射辐射(散射光)
1.4 影响接收地表太阳辐射的因素
1.4.1 大气质量数AM(Air.Mass)与纬度
1.4.2 AM1.5 标准光谱
1.4.3 接收面朝向
1.4.4 追踪太阳机制
1.5 世界与中国的太阳辐照分布
参考文献
第2章 光伏发电原理与光伏电池
2.1 光伏技术基本原理
2.1.1 光生伏特效应
2.1.2 本征半导体、P型、N型半导体
2.1.3 P.N结
2.1.4 太阳能电池的原理与转换效率
2.2 第一代晶体硅太阳能电池
2.2.1 单晶硅太阳能电池
2.2.2 多晶硅太阳能电池
2.3 第二代薄膜太阳能电池
2.3.1 硅基薄膜电池
2.3.2 铜铟镓硒
2.3.3 碲化镉
2.4 第三代太阳能电池
2.4.1 染料敏化电池(Dye.Sensitized.Solar.Cell,DSSC)
2.4.2 有机光伏电池(Organic.Photovoltaic,OPV)
2.4.3 量子点电池
2.5 Ⅲ.Ⅴ族多结电池与聚光光伏
2.5.1 Ⅲ.Ⅴ族多结电池
2.5.2 Ⅲ.Ⅴ族多结聚光电池
2.6 太阳能光伏电池的研究现状
参考文献
第3章 光伏组件
3.1 晶体硅光伏组件
3.1.1 电池连接方式
3.1.2 组件构成
3.1.3 组件特性与参数
3.2 薄膜光伏组件
3.2.1 电池连接方式
3.2.2 组件构成
3.2.3 组件特性与参数
3.3 聚光光伏组件
3.3.1 组件构成
3.3.2 组件特性与参数
参考文献
第4章 光伏发电系统
4.1 光伏发电系统基本原理与组成
4.2 光伏发电系统的类型
4.2.1 并网与离网光伏发电系统
4.2.2 地面光伏系统及与建筑结合的光伏发电系统
4.3 自发自用的建筑屋顶分散式光伏发电系统
4.3.1 工程安装
4.3.2 资金投入与回报
4.3.3 社会效益
4.3.4 潜在经济效益
4.3.5 推广自发自用分散式屋顶光伏系统
4.4 光伏发电成本
4.4.1 光伏发电系统的成本构成
4.4.2 均化发电成本(Levelized.Cost.of.Electricity,LCOE)
4.5 光伏系统的应用
参考文献
第5章 光伏系统的设计
5.1 光伏系统容量与发电量的设计计算
5.1.1 系统设计思路、步骤与内容
5.1.2 与设计相关的因素与技术条件
5.1.3 方阵倾角的选择
5.1.4 日照与阴影分析
5.1.5 系统装机容量、发电量计算方法
5.2 光伏系统的结构设计
5.2.1 确定光伏电站现场布置
5.2.2 光伏组件强度、重量与尺寸
5.2.3 方阵基础与支架设计
5.2.4 配电房安排
5.3 光伏系统的电气设计
5.3.1 直流汇流箱的配置
5.3.2 逆变器的选型
5.3.3 交直流配电柜设计
5.3.4 防雷与接地系统设计
5.3.5 蓄电池组的设计
5.4 并网接入设计
参考文献
第6章 光伏逆变器
6.1 逆变器的定义与分类
6.1.1 逆变器的定义
6.1.2 逆变器的分类
6.1.3 逆变器的发展前景
6.2 光伏逆变器
6.2.1 光伏逆变器的分类
6.2.2 逆变器的工作原理
6.2.3 国内外逆变器发展现状
6.3 光伏离网逆变器
6.3.1 额定输出容量
6.3.2 输出电压稳定度
6.3.3 整机逆变效率
6.3.4 过载保护功能
6.3.5 设备启动性能
6.4 光伏并网逆变器
6.4.1 最大功率跟踪
6.4.2 防孤岛效应
6.4.3 自动运行与停机功能
6.4.4 自动电压调整
6.4.5 直流检测
6.5 逆变器制作及其使用维护
6.5.1 逆变器的工作原理
6.5.2 逆变器制作过程
6.5.3 逆变器的操作使用与维护检修
参考文献
第7章 光伏发电储能装置
7.1 铅酸蓄电池
7.1.1 铅酸蓄电池简介
7.1.2 铅酸蓄电池的性能参数
7.1.3 免维护铅酸蓄电池
7.1.4 胶体蓄电池
7.2 其他储能电池与器件
7.2.1 镍镉电池
7.2.2 镍氢电池
7.2.3 锂离子电池
7.2.4 超级电容器
7.3 蓄电池充放电控制与管理
7.3.1 光伏控制器的分类与电路原理
7.3.2 光伏控制器的性能特点与技术参数
7.3.3 光伏控制器的选型配置
参考文献
第8章 其他电气设备与部件
8.1 直流侧设备
8.1.1 汇流箱
8.1.2 直流配电柜
8.1.3 离网控制器
8.1.4 储能蓄电池
8.1.5 光伏电缆
8.1.6 其他元器件
8.2 交流侧设备
8.2.1 交流配电柜
8.2.2 防逆流元件
8.2.3 交流防雷元件
8.2.4 配电盘
8.2.5 单向电能表(发电与用电)
8.2.6 干式变压器
8.3 并网监控系统设计
8.3.1 监控主机
8.3.2 网络版监控软件
8.3.3 系统调度
8.3.4 系统通信
8.3.5 谐波控制
参考文献
第9章 光伏追日系统
9.1 光伏追日系统的类型
9.2 光伏追日系统对组件“有效”效率的影响
9.2.1 采用追日系统的平板光伏组件
9.2.2 聚光光伏组件
9.3 光伏追日系统的工作原理
9.3.1 光伏追日系统的组成
9.3.2 简单追日机制示例
9.3.3 光伏追日系统的设计示例
9.4 光伏追日系统的技术参数
9.5 太阳能光伏发电系统用对日单轴自动跟踪装置技术要求
参考文献
第10章 光伏电站的施工、检测与维护
10.1 光伏电站施工
10.1.1 方阵基础及其光伏发电系统施工
10.1.2 配电设备及其设备之间线缆施工
10.1.3 防雷接地及其监控检测系统施工
10.2 光伏系统检测及其检测仪器
10.2.1 设备外观检查
10.2.2 设备性能测试
10.2.3 光伏方阵绝缘电阻的测量
10.2.4 逆变设备绝缘电阻的测量
10.2.5 接地电阻测量
10.2.6 绝缘电阻测量
10.2.7 电能质量与并网保护装置测试
10.3 光伏电站管理维护
10.3.1 建立光伏电站的管理体系
10.3.2 光伏电站维护管理的基本内容
10.3.3 光伏电站日常管理的制度
参考文献
第11章 光伏发电系统效益与运营模式
11.1 光伏发电的效益
11.1.1 综述
11.1.2 经济成本
11.1.3 减排效益
11.1.4 社会效益
11.1.5 能量回报
11.2 光伏发电市场的政策扶持
11.2.1 国外光伏发电扶持政策
11.2.2 国内光伏发电政策
11.3 并网光伏系统开发模式
11.3.1 地面并网光伏电站
11.3.2 分散式并网光伏系统
11.4 并网光伏系统的运营模式
11.4.1 上网电价(FIT)模式
11.4.2 节能表现协议(Energy.Performance.Contracting,EPC)
11.4.3 电力购买协议(PPA)
11.5 离网光伏系统开发与运营模式
参考文献
第12章 中国光伏市场与政策
12.1 中国太阳能光伏市场现状
12.1.1 “光伏大国”
12.1.2 “两头在外”
12.1.3 “突围之路”
12.1.4 国内光伏市场发展历程
12.1.5 上网电价——特许招标
12.2 市场前景预测
12.2.1 我国太阳能市场潜力
12.2.2 世界太阳能市场发展
12.2.3 中国太阳能发展现状及前景预测
12.3 适合中国国情的光伏政策
12.3.1 中国能源现状与经济转型概述
12.3.2 观念转变
12.3.3 政策的可行性、科学性
12.3.4 国内光伏政策的现状和展望
参考文献
第13章 光伏发电的其他应用
13.1 太空光伏发电站
13.1.1 微波输电的发展史
13.1.2 微波输能的基本原理
13.1.3 SSPS计划的由来
13.1.4 SSPS计划的原理
13.1.5 太空光伏电站的技术与经济问题
13.2 电动车光伏充电站
13.2.1 电动车充电站的基本原理
13.2.2 光伏充电站设计
13.2.3 电动车光伏充电站投资成本
参考文献
第14章 太阳能光伏发电系统应用实例
14.1 深圳福田园博园1MWP光伏屋顶并网电站
14.1.1 项目安装地情况
14.1.2 环境与资源情况
14.1.3 光伏电站方案描述
14.1.4 光伏电站主要设备
14.1.5 环保效益
14.1.6 社会效益
14.1.7 经济效益
14.2 内蒙古乌海科技馆50kWP光伏屋顶并网电站
14.2.1 项目安装地情况
14.2.2 环境与资源情况
14.2.3 光伏电站方案描述
14.2.4 光伏电站主要设备
14.2.5 环保效益
14.2.6 社会效益
14.2.7 经济效益
14.3 深圳市宝安区新湖中学4.32kWP光伏地面离网电站
14.3.1 项目安装地情况
14.3.2 光伏电站方案描述
14.3.3 光伏电站主要设备
14.3.4 环保效益
14.3.5 社会效益
14.3.6 经济效益
14.4 杭州万轮科技创业中心5.12kWP光伏屋顶并网电站
14.4.1 项目安装地情况
14.4.2 环境与资源情况
14.4.3 光伏电站方案描述
14.4.4 光伏电站主要设备
14.4.5 环保效益
14.4.6 社会效益
14.4.7 经济效益
14.5 巩义市青龙山庄50kWP地面光伏并网电站
14.5.1 项目安装地情况介绍
14.5.2 环境与资源情况
14.5.3 光伏电站方案描述
14.5.4 光伏电站主要设备
14.5.5 环保效益
14.5.6 社会效益
14.5.7 经济效益
附录1 “关于实施金太阳示范工程的通知”
附录2 关于做好2010年金太阳集中应用示范工作的通知
附录3 第二批光伏特许权招标结果公告
附录4 金太阳示范工程财政补助资金管理暂行办法
附录5 金太阳示范工程和太阳能光电建筑应用示范工程关键设备入围企业目录
附录6 2010年金太阳示范工程项目目录
太阳能全智能控制器
太阳能全智能控制器,太阳能控制器是一个微机数据采集和监测控制系统。太阳能控制器能保证太阳能阵列全天时、全天候的最大效率的工作。下面看看太阳能全智能控制器。
太阳能全智能控制器1太阳能控制器是用于太阳能发电系统中控制多路太阳能电池方阵对蓄电池充电以及蓄电池给太阳能逆变器负载供电的自动控制设备,它对蓄电池的充、放电条件加以规定和控制,并按照负载的电源需求控制太阳电池组件和蓄电池对负载的电能输出,是整个光伏供电系统的核心部件之一。
太阳能控制器最基本功能在于控制电池电压并打开了电路,当电池电压升到一定程度时,停止蓄电池充电。
在大多数光伏系统中都用到了控制器以保护蓄电池免于过充或过放,过充可能使电池中的电解液汽化,造成故障,而电池过放会引起电池过早失效。过充过放均有可能损害负载,所以控制器是光伏发电系统的核心部件之一。
简单来说,太阳能控制器的作用可以分为:
1、功率调节功能。
2、通信功能:简单指示功能、协议通讯功能、无线等形式的后台管理。
3、完善的保护功能:电气保护反接、短路、过流等。
PWM太阳能控制器和MPPT太阳能控制器
PWM太阳能控制器采用PWM控制方式,充电转换效率为75-80%。
MPPT太阳能控制器采用最大功率点跟踪技术,是PWM太阳能控制器的升级换代产品,MPPT太阳能控制器能够实时检测太阳能板电压和电流,并不断追踪最大功率,使系统始终以最大功率对蓄电池进行充电。
MPPT跟踪效率为99%,整个系统发电效率高达到97%,并且对电池拥有优秀的管理,分为MPPT充电、恒压均充电和恒压浮充电。
太阳能全智能控制器2太阳能控制器具有以下主要功能:
1、过充保护:充电电压高于保护电压时,自动关断对蓄电池充电,此后当电压掉至维持电压时,蓄电池进入浮充状态,当低于恢复电压后浮充关闭,进入均充状态。
2、过放保护:当蓄电池电压低于保护电压时,控制器自动关闭输出以保护蓄电池不受损坏;当蓄电池再次充电后,又能自动恢复供电。
3、负载过流及短路保护:负载电流超过10A或负载短路后,熔断丝熔断,更换后可继续使用。
4、过压保护:当电压过高时,自动关闭输出,保护电器不受损坏。
5、具有防反充功能:采用肖特基二极管防止蓄电池向太阳能电池充电。
6、具有防雷击功能:当出现雷击的.时候,压敏电阻可以防止雷击,保护控制器不受损坏。
7、太阳能电池反接保护:太阳能电池“+”“-”极性接反,纠正后可继续使用。
8、蓄电池反接保护:蓄电池“+”“-”极性接反,熔断丝熔断,更换后可继续使用
9、蓄电池开路保护:万一蓄电池开路,若在太阳能电池正常充电时,控制器将限制负载两端电压,以保证负载不被损伤,若在夜间或太阳能电池不充电时,控制器由于自身得不到电力,不会有任何动作。
10、具有温度补偿功能。
11、自检:当控制器受到自然因数影响或人为操作不当时,可以让控制器自检,让人知道控制器是否完好,减少了很多不必须要的工时,为赢得工程质量和工期创造条件。
12、恢复间隔:是为过充或过放保护所做的恢复间隔,以避免线电阻或电池的自恢复特点造成负载的工作斗动。
13、温度补偿:监视电池的温度,对充放值进很修正,让电池工作在理想状态。
14、光控:多用于自动灯具,当环境足够亮时,控制器就会自动关闭负载输出;而环境暗下来后又会自动开启负载,以实现自动控制的功能。
太阳能全智能控制器3太阳能控制器是用于太阳能发电系统中,控制多路太阳能电池方阵对蓄电池充电以及蓄电池给太阳能逆变器负载供电的自动控制设备。太阳能控制器采用高速CPU微处理器和高精度A/D模数转换器,是一个微机数据采集和监测控制系统。
既可快速实时采集太阳能系统当前的工作状态,随时获得PV站的工作信息,又可详细积累PV站的历史数据,为评估PV系统设计的合理性及检验系统部件质量的可靠性提供了准确而充分的依据。此外,太阳能控制器还具有串行通信数据传输功能,可将多个太阳能系统子站进行集中管理和远距离控制。
通过使用创新性的最大功率追踪技术,太阳能控制器能保证太阳能阵列全天时、全天候的最大效率的工作。可以将太阳能组件工作效率提高30%。还包含搜索功能,它在整个太阳能板工作电压范围内每2个小时搜寻一次绝对最大功率输出点。带温度补偿的三级I-U曲线充电控制可以显著地延长蓄电池的寿命。
开路电压高达95V的使用于并网系统中的较低成本的太阳能电池板可以通过太阳能控制器使用于独立12V或24V系统中,这可以极大的降低整个系统的成本。
太阳能控制器的作用:
1、功率调节功能。
2、通信功能、简单指示功能、协议通讯功能。
3、完善的保护功能、电气保护、反接、短路、过流。