大家好!今天让小编来大家介绍下关于光伏逆变系统_光伏发电逆变器原理方框图的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.有谁知道光伏逆变器的作用么?2.光伏发电逆变器原理方框图
3.光伏发电系统对逆变器有什么要求
4.简述逆变器的选型
有谁知道光伏逆变器的作用么?
光伏逆变器可以将光伏(PV)太阳能板产生的可变直流电压转换为市电频率交流电(AC)的逆变器,可以反馈回商用输电系统,或是供离网的电网使用。
光伏逆变器会用最大功率点追踪(MPPT)的技术来从太阳能板抽取最大可能的功率。
太阳能电池的太阳辐照度、温度及总电阻之间有复杂的关系,因此输出效率会有非线性的变化,称为电流-电压曲线(I-Vcurve)。
最大功率点追踪的目的就是在各环境下,针对太阳能模组的输出取_,产生一个(太阳能模组的)负载电阻来获得最大的功率。
光伏发电逆变器原理方框图
光伏逆变器mppt:在光伏发电系统的效率计算中光伏转换效率比重很大,如果不妥善解决,会导致整体效率下降转换效率决定于转换系统的工作点,最大功率点跟踪(MPPT)控制能够使工作点处于最优位置,改善转换效率,减少发电成本,是目前应用比较成熟的技术。一个比较好的MPPT控制要做到5点:快速、高效、独立、准确、低价。MPPT和光伏模组的结构转换结合会向更智能、逻辑判断更强的控制算法的方向发展。需要实现以下目标:(1)数学模型逐步优化、 智能处理方法广泛应用;(2)高响应度、高通用性、高准确率、高性价比;(3)实现在单级式并网系统中的应用。
光伏发电系统对逆变器有什么要求
逆变器是一种把直流电能(电池、蓄电池)转变成交流电(一般为220伏50HZ正弦波或方波)的装置。我们常见的应急电源,一般都是把直流电瓶逆变成220V交流的。简单来讲,逆变器就是一种将直流电转化为交流电的装置。
性能优良的家用逆变电源电路图
这种设计,材料易取,输出功率150W,本电路设计频率为300HZ左右,目的是缩小逆变变压器的体积、重量、输出波形方波。这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。这款逆变器较为容易制作,可以将12V直流电源电压逆变为220V市电电压,电路由BG2和BG3组成的多谐振荡器推动,再通过BG1和BG2驱动,来控制BG6和BG7工作。其中振荡电路由BG5与DW组的稳压电源供电,这样可以使输出频率比较稳定。在制作时,变压器可选有常用双12V输出的市电变压器。可根据需要,选择适当的12V蓄电池容量。
高效率的正弦波逆变器电器图
该电路用12V电池供电。先用一片倍压模块倍压为运放供电。可选取ICL7660或MAX1044。运放1产生50Hz正弦波作为基准信号。运放2作为反相器。运放3和运放4作为迟滞比较器。其实运放3和开关管1构成的是比例开关电源。运放4和开关管2也同样。它的开关频率不稳定。在运放1输出信号为正相时,运放3和开关管工作。这时运放2输出的是负相。这时运放4的正输入端的电位(恒为0)总比负输入端的电位高,所以运放4输出恒为1,开关管关闭。在运放1输出为负相时,则相反。这就实现了两开关管交替工作。
当基准信号比检测信号,也即是运放3或4的负输入端的信号比正输入端的信号高一微小值时,比较器输出0,开关管开,随之检测信号迅速提高,当检测信号比基准信号高一微小值时,比较器输出1,开关管关。这里要注意的是,在电路翻转时比较器有个正反馈过程,这是迟滞比较器的特点。比如说在基准信号比检测信号低的前提下,随着它们的差值不断地靠近,在它们相等的瞬间,基准信号马上比检测信号高出一定值。这个“一定值”影响开关频率。它越大频率越低。这里选它为0.1~0.2V。
C3,C4的作用是为了让频率较高的开关续流电流通过,而对频率较低的50Hz信号产生较大的阻抗。C5由公式:50=算出。L一般为70H,制作时最好测一下。这样C为0.15μ左右。R4与R3的比值要严格等于0.5,大了波形失真明显,小了不能起振,但是宁可大一些,不可小。开关管的最大电流为:I==25A。
现有的逆变器,有方波输出和正弦波输出两种。方波输出的逆变器效率高,对于采用正弦波电源设计的电器来说,除少数电器不适用外大多数电器都可适用,正弦波输出的逆变器就没有这方面的缺点,却存在效率低的缺点,如何选择这就需要根据自己的需求了。
简述逆变器的选型
光伏发电系统分为两类:独立光伏系统和并网光伏系统,因此逆变器也分为两类:独立逆变器和并网逆变器,这两种逆变器均适用光伏发电系统,但各适应各的。独立逆变器又分为正弦波和修正波两种,要求带电感性负载,如电机、比如冰箱、洗衣机等要求使用正弦波逆变器;如仅是照明和看电视可以采用修正波的。两者价格有较大的差别。并网逆变器均是正弦波的,要求要更高些,需要检测电网的相位、频率,最重要的是还有“防孤岛效应”的功能,即电网因故障停电时,并网逆变器必须立即停止向电网供电,否则如果是电网维修,电工将电网拉闸后来检修电网,光伏系统仍向电网供电,会导致电工触电,因此并网逆变器必须具备合格的“防孤岛效应”的功能,同时还能不断检测电网,如果电网恢复供电,光伏系统就自动恢复供电。由于太阳电池发电的特点,如果控制不好,其可能的输出功率不能全部发挥,因此一般逆变器均要求具有最大功率跟踪功能。多台逆变器并行工作时还需要具有通讯和协调控制的功能。还有最重要的一点是太阳能发电成本较高,要求逆变器能有较高的转换效率,目前大型的逆变器均能做到96%以上。无故障工作时间要长,使用寿命要长。
光伏并网逆变器的常见类型
目前我国光伏电站采用的逆变器结构主要有:集中式光伏逆变器系统、组串式光伏逆变器系统、集散式光伏逆变器系统以及微型逆变器等。下面简单介绍一下集中式逆变器和组串式逆变器的的特点(后期会陆续介绍其他类型的逆变器):
>>>>
1.1集中式光伏逆变器
集中式光伏逆变系统是大型光伏电站普遍采用的电能变换装置,也是目前最为成熟的技术方案之一。集中式光伏逆变系统采用一路最大功率点跟踪(MPPT)输入,集中MPPT寻优、集中逆变输出,
集中式逆变器是将很多光伏组串经过汇流后连接到逆变器直流输入端,集中完成将直流电转换为交流电的设备。集中式逆变器通常使用单级两电平三相全桥拓扑结构,大功率IGBT和SVPWM调制算法,通过DSP控制IGBT发出两电平方波,通过LCL或LC滤波器滤波后输出满足标准要求的正弦波。
集中式逆变器常见的输出功率为500kW、630kW,以500kW集中式逆变器应用业绩最多,集中式逆变器转换效率通常>98.3%,中国效率>97.5%,每台逆变器具有1路MPPT,MPPT电压跟踪范围为500V~850V,2台逆变器组成1MW方阵,通过一个双分裂绕组变压器升压后接入35kV中压电网。
目前国内还有最新的直流1500V集中式逆变器,单价功率1.25~3.125MW,采用逆变升压一体结构,组成2.5MW~6.4MW的发电系统,适合目前平价电站的建设。
>>>>
集中式逆变器的优点:
1、安装相对简单,更方便维护。
2、该逆变系统采用单级式控制方式,控制相对简洁,相关技术比较成熟,单位系统造价低。
>>>>
集中式逆变器的缺点:
单台集中式光伏逆变器仅具备一路MPPT路数,针对光伏电池板组件之间存在的匹配偏差,无法做到对每一光伏电池板组串精确地跟踪控制,造成电池板利用效率降低。特别是山地电站的大规模涌现,其应用场景受地形限制,无法保证所有组串朝向、倾角按照最优方式配置,单路MPPT方案的集中式光伏逆变器很难满足现场应用要求。
>>>>
1.2组串式光伏逆变器
组串式光伏逆变系统最初是针对屋顶光伏等小型光伏发电系统设计的,可直接接入低压电网,不需要隔离变压器或升压变压器,特别适合于低压并网的分布式光伏发电。
为了更好地解决光伏电池板组件“失配”造成的发电量的损失,在大型光伏电站中也出现了以小功率组串式光伏逆变器组成的光伏逆变系统,通过对光伏电池板组件子方阵的分散MPPT优化,交流汇接并联后集中升压并网,从而较好的解决了大型光伏电站因光伏电池板组件“失配”导致的发电量损失。
组串式逆变器是基于模块化的概念,将光伏方阵中的每个光伏组串连接至指定逆变器的直流输入端,各自完成将直流电转换为交流电的设备。组串式逆变器通常使用两级三电平三相全桥拓扑结构,选用中小功率IGBT和SVPWM调制算法,通过DSP控制IGBT发出三电平方波,通过LCL或LC滤波器滤波后输出满足标准的正弦波。
组串式逆变器常见的输出功率为1~10kW、20kW~40kW、50kW~80kW,逆变器的最大转换效率为98%以上,中国效率高达98.4%以上,每台逆变器具有多路的MPPT,MPPT电压范围通常为200V~1000V(1~5kW小功率逆变器的MPPT范围一般是80V~500V,直接接入用户电网侧),通过交流汇流后经双绕组变压器接入35kV中压电网。