大家好!今天让小编来大家介绍下关于光伏组件峰瓦_1平方米太阳能板的发电量是多少的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.什么太阳能路灯2.1平方米太阳能板的发电量是多少
3.LED路灯是由哪几部分组成的?
什么太阳能路灯?风光互补路灯有什么区别?
太阳能路灯
太阳能路灯以太阳光为能源,白天充电晚上使用,无需复杂昂贵的管线铺设,可任意调整灯具的布局,安全节能无污染,无需人工操作工作稳定可靠,节省电费免维护。
1.系统组成
系统由太阳能电池组件部分(包括支架)、LED灯头、控制箱 (内有控制器、蓄电池)和灯杆几部分构成;金湛太阳能电池板光效达到127Wp/m2,效率较高,对系统的抗风设计非常有利;灯头部分以1W白光LED和1W黄光LED集成于印刷电路板上排列为一定间距的点阵作为平面发光源。
控制箱箱体以不锈钢为材质,美观耐用;控制箱内放置免维护铅酸蓄电池和充放电控制器。本系统选用阀控密封式铅酸蓄电池,由于其维护很少,故又被称为“免维护电池”,有利于系统维护费用的降低;充放电控制器在设计上兼顾了功能齐备(具备光控、时控、过充保护、过放保护和反接保护等)与成本控制,实现很高的性价比。
2.工作原理
系统工作原理简单,利用光生伏特效应原理制成的太阳能电池白天电池板接收太阳辐射能并转化为电能输出,经过充放电控制器储存在蓄电池中,夜晚当照度逐渐降低至10lux左右、金湛太阳能电池板开路电压4.5V左右,充放电控制器侦测到这一电压值后动作,蓄电池对灯头放电。蓄电池放电8.5小时后,充放电控制器动作,蓄电池放电结束。充放电控制器的主要作用是保护蓄电池。
3.设计思想
金湛太阳能路灯的设计与一般的太阳能照明相比,基本原理相同,但是需要考虑的环节更多。下面将以扬州市金湛照明电器有限公司的这款金湛太阳能LED大功率路灯为例,分几个方面做分析。
1 金湛太阳能电池组件选型
设计要求:扬州地区,负载输入电压24V功耗34.5W,每天工作时数8.5h,保证连续阴雨天数7天。
⑴ 扬州地区近二十年年均辐射量107.7Kcal/cm2,经简单计算扬州地区峰值日照时数约为3.424h;
⑵ 负载日耗电量 = = 12.2AH
⑶ 所需金湛太阳能组件的总充电电流= 1.05×12.2×÷(3.424×0.85)=5.9A
在这里,两个连续阴雨天数之间的设计最短天数为20天,1.05为金湛太阳能电池组件系统综合损失系数,0.85为蓄电池充电效率。
⑷ 金湛太阳能组件的最少总功率数 = 17.2×5.9 = 102W
选用峰值输出功率110Wp、单块55Wp的标准电池组件,应该可以保证路灯系统在一年大多数情况下的正常运行。
4.蓄电池选型
太阳能供电系统中,蓄电池的性能好坏直接影响系统的综合成本及运行好坏和使用寿命,本方案中选用我公司与中国科学院金属研究所联合研制的最新成果储能型胶体蓄电池,与普通的铅酸电池相比,它在设计上和制造工艺上有以下突出特点:
使用寿命超长,正常情况下使用寿命为五到十年。
采用适合的正负极合金配方及活性物质配比,使电池更加适合储能电池循环充、放电的使用特点。
胶体电解液的设计,有效的抑制活性物质的脱锈和极板的硫酸盐化现象,从而延缓了电池在使用过程中的性能衰降。大大改善了电池的深充放循环寿命。
选用笫四代照明产品LED光源 。
LED光源优势
? 发光效率高,耗电量小,使用寿命长,工作温度低。
? 安全可靠性强。
? 反应速度快,单元体积小,绿色环保。
? 同亮度下,耗电是白炽灯的十分之一,荧光灯的三分之一,而寿命却是白炽灯的50倍,荧光灯的20倍,是继白炽灯、荧光灯、气体放电灯之后的第四代照明产品。
单颗大功率超亮度LED的问世,是LED应用领域跨至高效率照明光源市场成为可能,将是人类继爱迪生发明白炽灯后最伟大的发明之一。5.电池组件支架
1) 倾角设计
为了让金湛太阳能电池组件在一年中接收到的太阳辐射能尽可能的多,我们要为金湛太阳能电池组件选择一个最佳倾角。
关于金湛太阳能电池组件最佳倾角问题的探讨,近年来在一些学术刊物上出现得不少。本次路灯使用地区为扬州地区,依据本次设计参考相关文献中的资料,选定金湛太阳能电池组件支架倾角为16o。
2)抗风设计
在金湛太阳能路灯系统中,结构上一个需要非常重视的问题就是抗风设计。抗风设计主要分为两大块,一为电池组件支架的抗风设计,二为灯杆的抗风设计。下面按以上两块分别做分析。⑴ 金湛太阳能电池组件支架的抗风设计
依据电池组件厂家的技术参数资料,金湛太阳能电池组件可以承受的迎风压强为2700Pa。若抗风系数选定为27m/s(相当于十级台风),根据非粘性流体力学,电池组件承受的风压只有365Pa。所以,组件本身是完全可以承受27m/s的风速而不至于损坏的。所以,设计中关键要考虑的是电池组件支架与灯杆的连接。
在本套路灯系统的设计中电池组件支架与灯杆的连接设计使用螺栓杆固定连接。
⑵ 路灯灯杆的抗风设计
路灯的参数如下:
电池板倾角A = 16o 灯杆高度 = 5m
设计选取灯杆底部焊缝宽度δ = 4mm 灯杆底部外径 = 168mm
焊缝所在面即灯杆破坏面。灯杆破坏面抵抗矩W 的计算点P到灯杆受到的电池板作用荷载F作用线的距离为
PQ = [5000+(168+6)/tan16o]× Sin16o = 1545mm=1.545m。所以,风荷载在灯杆破坏面上的作用矩M = F×1.545。
根据27m/s的设计最大允许风速,2×30W的双灯头金湛太阳能路灯电池板的基本荷载为730N。考虑1.3的安全系数,F = 1.3×730 = 949N。
所以,M = F×1.545 = 949×1.545 = 1466N.m。
根据数学推导,圆环形破坏面的抵抗矩W = π×(3r2δ+3rδ2+δ3)。
上式中,r是圆环内径,δ是圆环宽度。
破坏面抵抗矩W = π×(3r2δ+3rδ2+δ3)
=π×(3×842×4+3×84×42+43)= 88768mm3
=88.768×10-6 m3
风荷载在破坏面上作用矩引起的应力 = M/W
= 1466/(88.768×10-6) =16.5×106pa =16.5 Mpa<<215Mpa
其中,215 Mpa是Q235钢的抗弯强度。
所以,设计选取的焊缝宽度满足要求,只要焊接质量能保证,灯杆的抗风是没有问题的。
6.控制器
金湛太阳能充放电控制器的主要作用是保护蓄电池。基本功能必须具备过充保护、过放保护、光控、时控与防反接等。
蓄电池防过充、过放保护电压一般参数如表
1)当蓄电池电压达到设定值后就改变电路的状态。
在选用器件上,目前有采用单片机的,也有采用比较器的,方案较多,各有特点和优点,应该根据客户群的需求特点选定相应的方案,在此不一一详述。
2)表面处理
该系列产品采用静电涂装新技术,以FP专业建材涂料为主,可以满足客户对产品表面色彩及环境协调一致的要求,同时产品自洁性高、抗蚀性强,耐老化,适用于任何气候环境。加工工艺设计为热浸锌的基础上涂装,使产品性能大大提高,达到了最严格的AAMA2605.2005的要求,其它指标均已达到或超过GB的相关要求。
7.总结
扬州市金湛照明电器有限公司自主研发生产太阳能LED路灯、太阳能(无极灯)路灯、太阳能风能互补路灯。在设计--研发--生产太阳能LED路灯方面突破了太阳能路灯常见的三大问题(功率高,LED光衰快,无功耗输出多)等严重影响路灯造价与效率的问题。大大减少了成本,增长了使用寿命。更久远的售后服务与质保使太阳能路灯的推广工作,节约能源事业进一步发展。以下是本公司太阳能路灯方面的设计方案:整体设计基本上考虑到了各个环节;光伏组件的峰瓦数选型设计与蓄电池容量选型设计采用了目前最通用的设计方法,设计思想比较科学;抗风设计从电池组件支架与灯杆两块做了分析,分析比较全面;表面处理采用了目前最先进的技术工艺;路灯整体结构简约而美观;经过实际运行证明各环节之间匹配性较好。
目前,光合太阳能LED照明的初投资成本问题仍然是困扰我们大面积扩广的一个主要问题。但是,金湛太阳能电池光效在逐渐提高,而价格会逐渐降低,同样地市场上LED光效在快速地提高,而价格却在降低。与金湛太阳能的可再生、清洁无污染以及LED的环保节能相比,常规化石能源日趋紧张,并且使用后对环境会造成了日益严重的污染。所以,金湛太阳能LED照明作为一种方兴未艾的户外照明,展现给我们的将是无穷的生命力和广阔的前景。
太阳能路灯:
太阳能路灯设计中配置常规计算
随着传统能源的日益紧缺,太阳能的应用将会越来越广泛,尤其太阳能发电领域在短短 的数年时间内已发展成为成熟的朝阳产业。
1: 目前制约太阳能发电应用的最重要环节之一是价格,以一盏双路的太阳能路灯为例,两路负载共为60瓦,(以长江中下游地区有效光照4.5h/天、每夜放电7小时、增加电池板20%预留额计算)其电池板就需要160W左右,按每瓦30元计算,电池板的费用就要4800元,再加上180AH左右的蓄电池组费用也在1800左右,整个路灯一次性投入成本大大高于市电路灯,造成了太阳能路灯应用领域的主要瓶颈。
2:蓄电池的使用寿命也应该考虑在整个路灯系统应用中,一般的蓄电池保修三年或五年,但一般的蓄电池在一年、甚至半年以后就会出现充电不满的情况,有些实际充电率有可能下降到50%左右,这必将影响连续阴雨天时期的夜间正常照明,所以选择一款较好的蓄电池尤为重要。
3:一些工程商常选用LED灯做为太阳能路灯的照明,但是LED灯的质量层差不齐,光衰严重的LED半年就有可能衰减50%光照度。所以一定要选择光衰较慢的LED灯,或者选用无极灯、低压钠灯等。
4:控制器的选择往往也是被工程商忽略的一个问题,控制器的质量层差不齐,12V/10A的控制器市场价格在200-300元不等,虽然是整个路灯系统中价值最小的部分,但它却是非常重要的一个环节。控制器的好坏直接影响到太阳能路灯系统的组件寿命以及整个系统的采购成本,一:应该选择功耗较低的控制器,控制器24小时不间断工作,如其自身功耗较大,则会消耗部分电能,最好选择功耗在1毫安(MA)以下的控制器。二:要选择充电效率高的控制器,具有MCT充电模式的控制器能自动追踪电池板的最大电流,尤其在冬季或光照不足的时期,MCT充电模式比其他高出20%左右的效率。三:应选择具有两路调节功率的控制器,具有功率调节的控制器已被广泛推广,在夜间行人稀少时段可以自动关闭一路或两路照明,节约用电,还可以针对LED灯进行功率调节。除选择以上节电功能外,还应该注重控制器对蓄电池等组件的保护功能,像具有涓流充电模式的控制器就可以很好的保护蓄电池,增加蓄电池的寿命,另外设置控制器欠压保护值时,尽量把欠压保护值调在 ≥ 11.1V ,防止蓄电池过放。
5: 距离市区较远的地方还应该注意防盗工作,很多工程商因为施工疏忽,没有进行有效的防盗,导致蓄电池、电池板等组件被盗,不仅影响了正常照明,也造成了不必要的财产损失。目前工程案例中被盗居多为蓄电池,蓄电池埋于地下用水泥浇筑是一种有效防盗措施,在灯杆上加装蓄电池箱的最好将其进行焊接加固。
6: 控制器的防水,控制器一般装于灯罩、电池箱中,一般也不会进水,但在实际工程案例中 控制器端子的连接线往往因为雨水顺着连接线流入控制器造成短路。所以在施工时应该注意将 内部连接线弯成“U”字型并固型,外部连接线也可以固定为“U”型,这样雨水就无法淋入造成 控制器短路,另外还可在内外线接口处涂抹防水胶。
7: 在众多太阳能路灯实际应用中,很多地方的太阳能路灯不能满足正常照明需要,尤其在阴雨天更为突出,除使用了质量较差的相关组件外,另一个主要的原因就是一味降低组件成本,不按需求设计配置,减小电池板和蓄电池的使用标准,所以导致在阴雨天路灯无法提供照明。以下提供太阳能电池板和蓄电池配置计算公式:
一:首先计算出电流:
如:12V蓄电池系统; 30W的灯2只,共60瓦。
电流 = 60W÷12V = 5 A
二:计算出蓄电池容量需求:
如:路灯每夜累计照明时间需要为满负载 7小时(h);
(如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭)
需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天)
蓄电池 = 5A × 7h ×( 5+1)天 = 5A × 42h =210 AH
另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。
所以210AH也只是应用中真正标准的70%左右。
三:计算出电池板的需求峰值(WP):
路灯每夜累计照明时间需要为 7小时(h);
★:电池板平均每天接受有效光照时间为4.5小时(h);
最少放宽对电池板需求20%的预留额。
WP÷17.4V = (5A × 7h × 120%)÷ 4.5h
WP÷17.4V = 9.33
WP = 162(W)
★ :4.5h每天光照时间为长江中下游附近地区日照系数。
另外在太阳能路灯组件中,线损、控制器的损耗、及镇流器或恒流源的功耗各有不同,实际应用中可能在5%-25%左右。所以162W也只是理论值,根据实际情况需要有所增加。
太阳能路灯方案:
相关组件选择:
24VLED:选择LED照明,LED灯使用寿命长,光照柔和,价格合理,可以在夜间行人稀少时段实现功率调节,有利于节电,从而可以减少电池板的配置,节约成本。每瓦80-105lm左右,光衰小于年≤5%;
12V 蓄电池(串24V):选择铅酸免维护蓄电池,价格适中,性能稳定,太阳能路灯首选;
12V电池板(串24V):转换率15%以上单晶正片;
24V控制器:MCT充电方式、带调功功能;
6M灯杆(以造型美观,耐用、价格便宜为主)
一、40瓦备选方案配置一(常规)
1、 LED灯,单路、40W,24V系统;
2、 当地日均有效光照以4h计算;
3、每日放电时间10小时,(以晚7点-晨5点 为例)
4、满足连续阴雨天5天(另加阴雨前一夜的用电,计6天)。
电流 = 40W÷24V =1.67 A
计算蓄电池 = 1.67A × 10h ×(5+1)天
= 1.67A × 60h=100 AH
蓄电池充、放电预留20%容量;路灯的实际电流在2A以上(加20%
损耗,包括恒流源、线损等)
实际蓄电池需求=100AH 加20%预留容量、再加20%损耗
100AH ÷ 80% × 120% = 150AH
实际蓄电池为24V /150AH,需要两组12V蓄电池共计:300AH
计算电池板:
1、 LED灯 40W、 电流:1.67A
2、每日放电时间10小时(以晚7点-晨5点 为例)
3、电池板预留最少20%
4、当地有效光照以日均4h计算
WP÷17.4V =(1.67A × 10h × 120%)÷ 4 h
WP = 87W
实际恒流源损耗、线损等综合损耗在20%左右
电池板实际需求=87W × 120% = 104W
实际电池板需24V /104W,所以需要两块12V电池板共计:208W
综合组件价格:正片电池板208W,38元/瓦, 计 7904元
蓄电池300AH ,12元/AH 计:3600元
40W LED灯: 计:2250元
控制器(只) 250元
6米 灯杆 1200元
本套组件 总计:15204元
二、40瓦备选方案配置二(带调节功率)
1、 LED灯,单路、40W,24V系统。
2、 当地日均有效光照以4h计算,
3、每日放电时间10小时,(以晚7点-晨5点 为例)通过控制器夜间
分时段调节LED灯的功率,降低总功耗,实际按每日放电7小时计算。
(例一:晚7点至11点100%功率,11点至凌晨5点为50%功率。合计:7h)
(例二:7:00-10:30为100%,10:30-4:30为50%,4:30-5:00为100%)
4、满足连续阴雨天5天(另加阴雨前一夜的用电,计6天)。
电流 = 40W÷24V
=1.67 A
计算蓄电池 = 1.67A × 7h ×(5+1)天
= 1.67A × 42h
=70 AH
蓄电池充、放电预留20%容量;路灯的实际电流在2A以上(加20%
损耗,包括恒流源、线损等)
实际蓄电池需求=70AH 加20%预留容量、再加20%损耗
70AH ÷ 80% × 120% = 105AH
实际蓄电池为24V /105AH,需要两组12V蓄电池共计:210AH
计算电池板:
1、 LED灯 40W、 电流:1.67A
2、每日放电时间10小时,调功后实际按7小时计算(调功同上蓄电池)
3、电池板预留最少20%
4、当地有效光照以日均4h计算
WP÷17.4V = (1.67A × 7h × 120%)÷ 4 h
WP = 61W
实际恒流源损耗、线损等综合损耗在20%左右
电池板实际需求=61W × 120% = 73W
实际电池板需24V /73W,所以需要两块12V电池板共计:146W
综合组件价格:正片电池板146W,
蓄电池210AH
40W LED灯:
控制器(只)
6米 灯杆
三、40瓦备选方案三(带调节功率、带恒流)
采用自带恒流、恒压、调功一体控制器降低系统功耗、降低组件成本。
(实际降低系统总损耗20%左右,以下以15%计算)
1、 LED灯,单路、40W,24V系统。
2、 当地日均有效光照以4h计算,
3、每日放电时间10小时,(以晚7点-晨5点 为例)通过控制器夜间
分时段调节LED灯的功率,降低总功耗,实际按每日放电7小时计算。
(例一:晚7点至11点100%功率,11点至凌晨5点为50%功率。合计:7h)
(例二:7:00-10:30为100%,10:30-4:30为50%,4:30-5:00为100%)
4、满足连续阴雨天5天(另加阴雨前一夜的用电,计6天)。
电流 = 40W÷24V
=1.67 A
计算蓄电池 = 1.67A × 7h ×(5+1)天
= 1.67A × 42h
=70 AH
蓄电池充、放电预留20%容量;路灯的实际电流小于1.75A(加5%
线损等)
实际蓄电池需求=70AH 加20%预留容量、再加5%损耗
70AH ÷ 80% × 105% = 92AH
实际蓄电池为24V /92AH,需要两组12V蓄电池共计:184AH
计算电池板:
1、LED灯 40W、 电流:1.67A
2、每日放电时间10小时,实际按7小时计算(调功同上蓄电池)
3、电池板预留最少20%
4、当地有效光照以日均4h计算
WP÷17.4V = (1.67A × 7h × 120%)÷ 4 h
WP = 61W
实际线损等综合损耗小于5%
电池板实际需求=122W × 105% = 64W
实际电池板需24V /64W,所以需要两块12V电池板共计:128W
综合组件价格:正片电池板128W
蓄电池184AH ,
40W LED灯
控制器(只)
6米 灯杆
1平方米太阳能板的发电量是多少
1MW屋顶光伏发电站所需电池板面积,一块235W的多晶太阳能电池板面积1.65*0.992=1.6368㎡,1MW需要1000000/235=4255.32块电池,电池板总面积1.6368*4255.32=6965㎡
理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率:=5555.339*6965*17.5%=6771263.8MJ=6771263.8*0.28KWH=1895953.86KWH=189.6万度
实际发电效率
太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时要考虑到0.95的影响系数。
随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件,当光伏组件内部的温度达到5 0-7 5℃时,它的输出功率降为额定时的8 9%,在分析太阳电池板输出功率时要考虑到0.8 9的影响系数。
光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%的影响,在分析太阳电池板输出功率时要考虑到0.93的影响系数。
由于太阳辐射的不均匀性,光伏组件的输出几乎不可能同时达到最大功率输出,因此光伏阵列的输出功率要低于各个组件的标称功率之和。
另外,还有光伏组件的不匹配性和板问连线损失等,这些因素影响太阳电池板输出功率的系数按0.95计算。并网光伏电站考虑安装角度因素折算后的效率为0.88。
所以实际发电效率为0.95 * 0.89 * 0.93*0.95 X*0.88=65.7%。
光伏发电系统实际年发电量=理论年发电量*实际发电效率=189.6*0.95 * 0.89 *0.93*0.95 * 0.88=189.6*6 5.7%=124.56万度
扩展资料:
太阳能的能源是来自地球外部天体的能源(主要是太阳能),是太阳中的氢原子核在超高温时聚变释放的巨大能量,人类所需能量的绝大部分都直接或间接地来自太阳。
我们生活所需的煤炭、石油、天然气等化石燃料都是因为各种植物通过光合作用把太阳能转变成化学能在植物体内贮存下来后,再由埋在地下的动植物经过漫长的地质年代形成。此外,水能、风能、波浪能、海流能等也都是由太阳能转换来的。
太阳能光发电是指无需通过热过程直接将光能转变为电能的发电方式。 它包括光伏发电、光化学发电、光感应发电和光生物发电。?
光伏发电是利用太阳能级半导体电子器件有效地吸收太阳光辐射能,并使之转变成电能的直接发电方式,是当今太阳光发电的主流。在光化学发电中有电化学光伏电池、光电解电池和光催化电池,目前得到实际应用的是光伏电池。
光伏发电系统主要由太阳能电池、蓄电池、控制器和逆变器组成,其中太阳能电池是光伏发电系统的关键部分,太阳能电池板的质量和成本将直接决定整个系统的质量和成本。太阳能电池主要分为晶体硅电池和薄膜电池两类,前者包括单晶硅电池、多晶硅电池两种,后者主要包括非晶体硅太阳能电池、铜铟镓硒太阳能电池和碲化镉太阳能电池。
单晶硅太阳能电池的光电转换效率为15%左右,最高可达23%,在太阳能电池中光电转换效率最高,但其制造成本高。单晶硅太阳能电池的使用寿命一般可达15年,最高可达25年。多晶硅太阳能电池的光电转换效率为14%到16%,其制作成本低于单晶硅太阳能电池,因此得到大量发展,但多晶硅太阳能电池的使用寿命要比单晶硅太阳能电池要短。
太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。
目前从民用的角度,在国外技术研究趋于成熟且初具产业化的是"光伏--建筑(照明)一体化"技术,而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。
太阳能发电系统主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。
太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。
太阳能是太阳内部连续不断的核聚变反应过程产生的能量。地球轨道上的平均太阳辐射强度为1,369w/㎡。地球赤道周长为40,076千米,从而可计算出,地球获得的能量可达173,000TW。在海平面上的标准峰值强度为1kw/m2,地球表面某一点24h的年平均辐射强度为0.20kw/㎡,相当于有102,000TW 的能量。
尽管太阳辐射到地球大气层的能量仅为其总辐射能量的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤,每秒照射到地球的能量则为1.465×10^14焦。
地球上的风能、水能、海洋温差能、波浪能和生物质能都是来源于太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。
缺点
(1)分散性:到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1,000W左右;若按全年日夜平均,则只有200W左右。
而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。
(2)不稳定性:由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。
为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来,以供夜间或阴雨天使用,但蓄能也是太阳能利用中较为薄弱的环节之一。
(3)效率低和成本高:太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。但有的太阳能利用装置,因为效率偏低,成本较高,现在的实验室利用效率也不超过30%,总的来说,经济性还不能与常规能源相竞争。在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。
(4)太阳能板污染:现阶段,太阳能板是有一定寿命的,一般最多3-5年就需要换一次太阳能板,而换下来的太阳能板则非常难被大自然分解,从而造成相当大的污染。
LED路灯是由哪几部分组成的?
单体太阳电池不能直接做电源使用。作电源必须将若干单体电池串、并联连接和严密封装成组件。太阳能板(也叫太阳能电池组件)是太阳能发电系统中的核心部分,也是太阳能发电系统中最重要的部分。
1平方米太阳能板的发电量取决于太阳能电池板的光电转换效率。晶体硅太阳能电池现在一般的效率为14%,也就是说一平方米能140峰瓦的发电量。非晶硅太阳艰电池现在一般都在6%,也就是说一平方米能有60峰瓦的发电量。
太阳能路灯LED工作原理与设计2008年01月25日 星期五 22:28前言:随着世界能源危机的加剧,各国都在寻求解决能源危机的办法,一条道路是寻求新能源和可再生能源的利用;另一条是寻求新的节能技术,降低能源的消耗,提高能源的利用效率。 太阳能是地球上最直接最普遍也是最清洁的能源,太阳能作为一种巨量可再生能源,每天达到地球表面的辐射能大约等于2.5亿万桶石油,可以说是取之不尽、用之不竭。LED的光谱几乎全部集中于可见光频段,所以发光效率高,一般人都认为,节能灯可节能4/5是伟大的创举,但LED比节能灯还要节能1/4,这是固体光源更伟大的改革。 太阳能LED照明集成了太阳能与LED的优点。 本文对一款太阳能LED大功率路灯做了深入探讨与详细介绍,如图1 1、系统介绍 1.1 系统基本组成简介 如图2,系统由太阳能电池组件部分(包括支架)、LED灯头、控制箱 (内有控制器、蓄电池)和灯杆几部分构成;太阳能电池板光效达到127Wp/m2,效率较高,对系统的抗风设计非常有利;灯头部分以1W白光LED和1W黄光LED集成于印刷电路板上排列为一定间距的点阵作为平面发光源。 控制箱箱体以不锈钢为材质,美观耐用;控制箱内放置免维护铅酸蓄电池和充放电控制器。本系统选用阀控密封式铅酸蓄电池,由于其维护很少,故又被称为“免维护电池”,有利于系统维护费用的降低;充放电控制器在设计上兼顾了功能齐备(具备光控、时控、过充保护、过放保护和反接保护等)与成本控制,实现很高的性价比。 1.2 工作原理介绍 系统工作原理简单,利用光生伏特效应原理制成的太阳能电池白天太阳能电池板接收太阳辐射能并转化为电能输出,经过充放电控制器储存在蓄电池中,夜晚当照度逐渐降低至10lux左右、太阳能电池板开路电压4.5V左右,充放电控制器侦测到这一电压值后动作,蓄电池对灯头放电。蓄电池放电8.5小时后,充放电控制器动作,蓄电池放电结束。充放电控制器的主要作用是保护蓄电池。 2、系统设计思想 太阳能路灯的设计与一般的太阳能照明相比,基本原理相同,但是需要考虑的环节更多。下面将以香港真明丽集团有限公司的这款太阳能LED大功率路灯为例,分几个方面做分析。 2.1 太阳能电池组件选型 设计要求:广州地区,负载输入电压24V功耗34.5W,每天工作时数8.5h,保证连续阴雨天数7天。 ⑴ 广州地区近二十年年均辐射量107.7Kcal/cm2,经简单计算广州地区峰值日照时数约为3.424h; ⑵ 负载日耗电量 = = 12.2AH ⑶ 所需太阳能组件的总充电电流= 1.05×12.2×÷(3.424×0.85)=5.9A 在这里,两个连续阴雨天数之间的设计最短天数为20天,1.05为太阳能电池组件系统综合损失系数,0.85为蓄电池充电效率。 ⑷ 太阳能组件的最少总功率数 = 17.2×5.9 = 102W 选用峰值输出功率110Wp、单块55Wp的标准电池组件,应该可以保证路灯系统在一年大多数情况下的正常运行。 2.2 蓄电池选型 蓄电池设计容量计算相比于太阳能组件的峰瓦数要简单。 根据上面的计算知道,负载日耗电量12.2AH。在蓄电池充满情况下,可以连续工作7个阴雨天,再加上第一个晚上的工作,蓄电池容量: 12.2×(7+1) = 97.6 (AH),选用2台12V100AH的蓄电池就可以满足要求了。 2.3 太阳能电池组件支架 2.3.1 倾角设计 为了让太阳能电池组件在一年中接收到的太阳辐射能尽可能的多,我们要为太阳能电池组件选择一个最佳倾角。 关于太阳能电池组件最佳倾角问题的探讨,近年来在一些学术刊物上出现得不少。本次路灯使用地区为广州地区,依据本次设计参考相关文献中的资料[1],选定太阳能电池组件支架倾角为16o。 2.3.2 抗风设计 在太阳能路灯系统中,结构上一个需要非常重视的问题就是抗风设计。抗风设计主要分为两大块,一为电池组件支架的抗风设计,二为灯杆的抗风设计。下面按以上两块分别做分析。 ⑴ 太阳能电池组件支架的抗风设计 依据电池组件厂家的技术参数资料,太阳能电池组件可以承受的迎风压强为2700Pa。若抗风系数选定为27m/s(相当于十级台风),根据非粘性流体力学,电池组件承受的风压只有365Pa。所以,组件本身是完全可以承受27m/s的风速而不至于损坏的。所以,设计中关键要考虑的是电池组件支架与灯杆的连接。 在本套路灯系统的设计中电池组件支架与灯杆的连接设计使用螺栓杆固定连接。 ⑵ 路灯灯杆的抗风设计 路灯的参数如下 电池板倾角A = 16o 灯杆高度 = 5m 设计选取灯杆底部焊缝宽度δ = 4mm 灯杆底部外径 = 168mm 如图3,焊缝所在面即灯杆破坏面。灯杆破坏面抵抗矩W 的计算点P到灯杆受到的电池板作用荷载F作用线的距离为PQ = [5000+(168+6)/tan16o]× Sin16o = 1545mm =1.545m。所以,风荷载在灯杆破坏面上的作用矩M = F×1.545。 根据27m/s的设计最大允许风速,2×30W的双灯头太阳能路灯电池板的基本荷载为730N。考虑1.3的安全系数,F = 1.3×730 = 949N。 所以,M = F×1.545 = 949×1.545 = 1466N.m。 根据数学推导,圆环形破坏面的抵抗矩W = π×(3r2δ+3rδ2+δ3)。 上式中,r是圆环内径,δ是圆环宽度。 破坏面抵抗矩W = π×(3r2δ+3rδ2+δ3) =π×(3×842×4+3×84×42+43)= 88768mm3 =88.768×10-6 m3 风荷载在破坏面上作用矩引起的应力 = M/W = 1466/(88.768×10-6) =16.5×106pa =16.5 Mpa<<215Mpa 其中,215 Mpa是Q235钢的抗弯强度。 所以,设计选取的焊缝宽度满足要求,只要焊接质量能保证,灯杆的抗风是没有问题 2.4 控制器 太阳能充放电控制器的主要作用是保护蓄电池。基本功能必须具备过充保护、过放保护、光控、时控与防反接等。 蓄电池防过充、过放保护电压一般参数如表1,当蓄电池电压达到设定值后就改变电路的状态。 在选用器件上,目前有采用单片机的,也有采用比较器的,方案较多,各有特点和优点,应该根据客户群的需求特点选定相应的方案,在此不一一详述。 2.5 表面处理 该系列产品采用静电涂装新技术,以FP专业建材涂料为主,可以满足客户对产品表面色彩及环境协调一致的要求,同时产品自洁性高、抗蚀性强,耐老化,适用于任何气候环境。加工工艺设计为热浸锌的基础上涂装,使产品性能大大提高,达到了最严格的AAMA2605.2005的要求,其它指标均已达到或超过GB的相关要求。 3、结束语 整体设计基本上考虑到了各个环节;光伏组件的峰瓦数选型设计与蓄电池容量选型设计采用了目前最通用的设计方法,设计思想比较科学;抗风设计从电池组件支架与灯杆两块做了分析,分析比较全面;表面处理采用了目前最先进的技术工艺;路灯整体结构简约而美观;经过实际运行证明各环节之间匹配性较好。 目前,太阳能LED照明的初投资问题仍然是困扰我们的一个主要问题。但是,太阳能电池光效在逐渐提高,而价格会逐渐降低,同样地市场上LED光效在快速地提高,而价格却在降低。与太阳能的可再生、清洁无污染以及LED的环保节能相比,常规化石能源日趋紧张,并且使用后对环境会造成了日益严重的污染。所以,太阳能LED照明作为一种方兴未艾的户外照明,展现给我们的将是无穷的生命力和广阔的前景。
参考资料:
http://hi.baidu.com/coffeeko/blog/item/12b585026030fc0b4bfb518c.html