大家好!今天让小编来大家介绍下关于光伏组件容性_光伏组件几个重要的性能参数的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.光伏组件耐压测试时间要求2.光伏组件几个重要的性能参数
3.影响光伏电站容配比的因素有哪些?
光伏组件耐压测试时间要求
一、组件外观检测:
执行标准:IEC61215:2005,IEC61646:2008,IEC61730:2004,UL1703:2008
检测项目:太阳能电池表面应完整、清洁、无机械损伤,电池与基座应粘贴牢固,边缘要密封。
组件监测台(照度>1000Lux)
照度计(量程>1000Lux)
数码相机
游标卡尺
千分尺
卷尺
二、绝缘耐压检测:
执行标准:IEC61215:2005,IEC61646:2008,IEC61730:2004,UL1703:2008
测试项目:耐电压测试(漏电测试仪),绝缘电阻测试,湿漏电流测试
三、稳态模拟器及I-V测试
执行标准:IEC61215:2005,IEC61646:2008,IEC61730:2004,UL1703:2008,IEC60904.3/9
试验项目
辐照度Irr
温度Temp
剂量Time
光老练试验Light soaking
600~1000
50℃
43KWH/m2
热斑耐久试验
700(800)~1000
50℃
5or 1h
温度系数的测量
1000W/m2
55~25↓
Continuous
STC/NOCT性能
800~1000
25℃
低辐照度下的性能
200W/m2
25℃
zui大功率测量
1000W/m2
25℃
四、组件户外测试:
执行标准:IEC61215:2005,IEC61646:2008,IEC61730:2004,UL1703:2008
测试项目:温度系数的测量,电池标称工作温度的测量(NOCT),热斑耐久试验(主要应用于前期试验),低辐照度下性能(200W/m2)
IEC61215:2005规定不均匀度不超过±2%的光照条件下找出zui热电池片,均匀性对稳态模拟器是zui困难的指标,几乎需要AAA及模拟器来实现,对组件厂是不实现的,因此的方法是户外完成前期试验。(IEC61646:2008对薄膜组件的定义为“During this process,the irradiance shall not change by more than±2%,薄膜的试验条件同晶体硅不太一样。)
温度系数的测量:
新标准要求BBB及或以上的光源
若是侧打光方式的脉冲模拟器不太适合展开温度系数的测量,因为IEC61215:2005&Ed.3规定的测试点,组件经高低温试验箱中取出,受自然降温速率影响,组件上下温差很大。比较实现的做法是户外完成,将测试样品和标准器件遮挡阳光和避风,直至其温度均匀,与周围环境温度相差在2℃以内,或允许测试样品达到一个稳定平衡温度,或冷却测试样品到低于需要测试温度的一个值,然后让组件自然升温。
五、组件紫外预处理检测:
执行标准:IEC61215:2005&Ed.3,IEC61646:2008,IEC61345:1998
检测项目:
试件
执行标准
波长/波段
试验判断依据
对应测试仪器
组件
IEC61215
IEC61646
280~385nm
280~400nm
外观检查
zui大功率测定
绝缘电阻测试
外观检查台
模拟器/I-V测试
绝缘耐压测试仪
封装膜
IEC61215
IEC61646
280~385nm
280~400nm
交联度测试
黄变指数
剥离强度试验
透光率测试
交联度测试系统
分光光度计
材料试验机
雾度议
密封胶
ASTM C1184
340nm/nm
拉力强度试验
材料试验机
六、热循环-湿热-湿冷冻测试:
执行标准:IEC61215:2005&Ed.3,IEC61646:2008,VDE0126-5:2008
试验目的:
测试项目:
组件类型
Voc
Isc
TC200热循环
湿冻试验
1.4×1.1m薄膜
100V
1.66A
试验全程通电测试
试验全程通电测试
2.6×2.2m薄膜
290V
2.66A
试验全程通电测试
试验全程通电测试
湿热试验:85℃、85%RH条件下1000小时
湿冻试验:-40℃~85℃
85±5%R,H.@85℃
七、引出端强度测试:
执行标准:IEC60068-2-21:2006,IEC61215:2005&Ed.3,IEC61646:2008,UL1703:2008,VDE0126-5:2008
测试目的:用于确定引出端及其组件体的附着是否能承受正常安装和操作过程中所受的力。
试验项目:
项目
试验荷重
拉力试验
弯曲试验
组件接线盒
20N、40N、89N
40N(IEC60068)
89N(UL1703)
20N(IEC60068)
弯曲试验:引出端承受相对于初始位置至少300的弯曲,试验样品本体在2~3秒钟时间内,倾斜大约900,然后以同样的时间使其恢复到初始位置。自动完成10次循环。
八、湿漏电流测试:
执行标准:IEC61215:2005&Ed.3,IEC61646:2008,UL1703:2008,VDE0126-5:2008
试验目的:光伏组件湿漏电流试验用于验证组件经雨、雾、露水或溶雪等气候造成的湿气进入组件内部对电路引起腐蚀、漏电或安全事故的影响。
耐压(漏电流)及绝缘电阻测试条件
IEC61215
绝缘试验
500V或1000V加两倍组件zui大系统电压
湿漏电流试验
500V或组件系统电压的较大值
IEC61646
绝缘试验
500V或1000V加两倍组件zui大系统电压
湿漏电流试验
500V或组件系统电压的较大值
IEC61730
绝缘试验
应用等级A:2000V加4倍系统zui高电压
应用等级B:1000V加2倍系统zui高电压
湿漏电流试验
等同现行的IEC61215/61646
UL1703
漏电流测试
zui大的额定系统电压
耐压测试
两倍于系统电压加上1000V的直流电压
潮湿绝缘电阻测试
500V直流电压
VDE0126
工频耐压试验
2000V+4倍的额定电压(交流电压)
湿漏电流试验
等同现行的IEC61215/61646
耐压试验说明:
IEC61215、61646、61730均未给出耐压测试的合格/失败判断依据,我们可以引用UL1703“Dielectric Volatage-Withstand Test”作为试验判断依据,即:耐压测试阶段漏电流不超过0.05mA。另外,程序升压时,不应大于500V/s,组件属于电容性负载,瞬间充电电流造成漏电流超标。
九、水压式载荷测试:
执行标准:IEC61215:2005&Ed.3,IEC61646:2008,UL1703:2008
试验目的:
试验项目:
十、冰雹撞击测试:
执行标准:EC61215:2005&Ed.3,IEC61646:2008
试验目的:验证光伏组件抗冰雹冲击能力。
十一、旁路二极管热性能测试
执行标准:IEC61215:2005&Ed.3,IEC61646:2008,UL1703:2008,VDE0126-5:2008
试验目的:评价旁路二极管的热设计及防止对组件有害的热斑效应性能的相对长期的可靠性。
十二、可接触性测试
执行标准:IEC61032-1997,IEC61730:2-2004,UL1703-2008,VDE0126-5:2008
试验目的:用于检测对人的手指误接触危险部件保护,也可以用来检测接线盒开口机械强度。
VDE0126-5:2008试验条件:
1、可重复接线式接线盒盒盖的固定-无螺栓紧固式盒盖
将IEC61032中规定的试验11,在75N的作用力下,置于所有能够引起盒盖松动的位置,并保持1min,试验中,盒盖不应松动。
2、电气安全防护
应使用IEC60529中规定的试验值,在20N的测试下,对接线盒进行检测。试验前,所有不需要工具便可松开的盒盖与壳体上的部件全部被卸下。测试中不应触碰到带电部分。
接地连续性测试
试验目的:证明组件所有裸露导体表面之间有一导电通路,这样光伏系统中裸露导体表面能够充分地接地。只有组件存在裸露导体时,如金属框架或金属接线盒,才要进行本试验。
十三、组件破裂测试:
执行标准:IEC61730-2:2004,AS/NZS2208:1996,ISO12543-2:2006,ISO12543-3:1998
试验目的:确认假如组件破裂后划伤或刺伤的危险性,本试验引自ANSIZ97.1中的碰撞试验。
撞击袋形状和尺寸按IEC61730要求设计撞击袋用*弹或铅球(直径2.5~3mm即7.5号子弹)填充到要求重量撞击袋的外表面用胶带包裹试验时撞击袋用1.3cm宽的有机玻璃丝增强的压断敏胶带*包裹测试框架以减小试验中的移动和偏转结构框和支柱为100mm×200mm或更大的槽钢。
撞击袋充以45.5Kg中的*弹,从1.2m的垂直高度自由下摆时将产生542J的动能。
十四、接线盒孔口盖敲击测试
执行标准:Implemtation of standards:IEC61730-2:2004,VDE0126-5:2008
试验目的:用于检测接线盒孔口盖是否对组件有影响。
十五、落球冲击测试
执行标准:UL1703:2008“Impact Test”组件及接线盒撞击试验
ISO12543-2:1006,ISO12543-3:1998“钢化玻璃”,“夹层玻璃”
VDE0126-5:2008光伏接线盒
试验目的:以规定重量之钢球调整在一定的高度,使之自由落下,打击试件,观察其受损程度,用以判定组件、玻璃及接线盒的品质。
落球质量Ball quality
535g(UL1703:2008)组件/接线盒
1040/2260g(ISO12543)钢化玻璃/夹层玻璃
1J(VDE0126-5:2008)接线盒(可靠率冲击*)
落球高度1m以上
十六、盐雾腐蚀测试
执行标准:UL1703:2008,IEC61701:1995
检测项目:
组件接线盒、背膜:参照IEC61701-1995(等效GB/T18912-2002)光伏组件盐雾试验,此标准引用了IEC60068-1:1988(等效GB/T2421-1999)标准,主要针对电工电子产品(接线盒)的环境试验;背膜则可能因盐雾环境的高温造成透气透水性变差,从而引起水份的渗透造成组件内部的变化(涂锡铜带的腐蚀、EVA、PVB同薄膜或硅片间的起泡甚至脱离)。
十七、热斑耐久测试
执行标准:UL1703:2008
试验目的:
检测项目:
EVA、PVB检测
执行标准:ISO10147:1994、GB/T18474:2001、GB/T2790:1995、GB/T2791:1995、HG-3698:2002、GB2410:1989、GB/T1037:2008、GB/T1634.2:2004、ASTMD2732、GB/T13519-1992
检测项目:
剥离强度、热熔、透明塑料透光率和雾度、塑料薄膜和片材透水蒸汽性、塑料 负荷变形温度、热收缩
十八、密封胶测试
执行标准:ASTM C1184:2000
测试项目:
流动性的测定、挤出性的测定、硬度、热老化、表干时间测定、拉伸粘结性的测定、冷拉-热压后粘结性、浸水后定伸粘结性、光老化后粘结性
十九、钢化玻璃、夹层玻璃测试
执行标准:SAC/TC225:2010建筑用太阳能光伏夹层玻璃,试验项目基本等同于IEC61646:2008及IEC61215:2005
ISO12543-2:2006、ISO12543-3:1998“钢化玻璃、夹层玻璃”
GB15763.2:2005“建筑用安全玻璃 第2部分:钢化玻璃”
GB15763.3:2009“建筑用安全玻璃 第3部分:夹层玻璃”
检测项目:
尺寸及其允许偏差:直尺
厚度及其允许偏差:游标卡尺(或千分尺)
外观质量:目测
弯曲度:直尺+塞尺
抗冲击性:落球冲击试验机
碎片状态:曲率半径0.2mm小锤或冲头
散弹袋冲击性能:散弹袋冲击试验机
表面应力:应力测试仪
耐热冲击性能:热老化试验箱+冰箱
二十、涂锡铜带,锡铅焊料,料浆测试
执行标准:GB/T2059:2008“铜及铜合金带材”
检测项目:抗拉强度、断后伸长率:
洛氏硬度试验:
弯曲试验:
电阻系数测量:
维氏硬度试验:
铜及铜合金化学分析:
晶粒度:
GB/T3131:2001“锡铅焊料”、YS/T612:2006“太阳能电池用浆料”
二十一、接线盒测试
执行标准:DIN VDE0126-5:2008“Technical specifications of selected materials of main part for terrestrial solar cell modules-part1:Junction box”
CGC/GF002.1:2009“地面用太阳电池组件主要部件选材技术条件 第1部分:接线盒
光伏组件几个重要的性能参数
一个3KW的家用屋顶太阳能电站,需要150W的太阳能电池板20块,太阳能电池板的重量为240kg,支架、水泥方砖重量约在210kg,支架占地面积为15平米,以这个标准计算出太阳能电站设备对屋顶的压力为30kg/平米。家用屋顶一般承重都超过30KG,因此,在上面安装光伏板是没有多大问题的。
分布式光伏定义:
分布式光伏发电,是指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。
分布式光伏优势:
1、它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,
2、不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。
更多关于光伏组件能承重多少,进入:https://m.abcgonglue.com/ask/4de9451615832943.html?zd查看更多内容
影响光伏电站容配比的因素有哪些?
太阳能发电系统主要参数
1、发电系统组成部分
(1)PV板
PV板(太阳能板、太阳能电池板、太阳能光伏组件),吸收光能并把光能转化为电能,PV板常用材料有单晶硅、多晶硅和非晶硅三种,其中单晶硅转换效率为14~20%,多晶蛙转换效率为13%左右,非晶蛙则为8~10%。
(2)储电设备
目前离网型发电系统的储电设备以免维护电池为主,电池能把PV板产生的电能储备起来
(3)充电和输出控制控制器
控制器的作用是控制整个系统稳定安全地工作。
(4)其它机械设备
2、发电系统主要成本构成及影响因素
(1)PV板
目前太阳能行业全面铺开,主要原因之一就是PV板价格过高,影响整套系统PV板价格,除了从PV板单价上控制之外,最重要就是控制PV板的使用数量,其影响因素有以下几点:
A、发电功率:从一定意义上说,要求发电功率越大,PV板使用量越多,成本越高,适当控制发电功率即可适当控制成本。
B、PV板所在地的天气情况:很明显,在同一个地区,同一块PV板,它在晴天一天所产生的电能远远比阴天要多,这一点就可以说明不同的地区对PV板的使用量有所不同。
C、PV板所在地的纬度,同一天内太阳对不同的纬度照射是不同的,这就造成同一块PV板在同一天内在不同纬度上产生的电量不同。
D、PV板使用环境 举个例子,PV板使用在山顶上,一天下来,都没有任何遮挡物遮挡照射在PV板上的阳光,发电能力肯定好,如果PV板使用在山脚,那一天下来,或多或少会有遮挡物遮挡照射在PV板上的阳光,所以PV板使用的周围环境是否有阳光遮挡物存在,在一定程度上影响PV板的发电能力。
(2)储能设备
一个发电系统一天要给用户供多少电能,这就决定了储能设备的容量问题,发电系统每天供给用户用电量越多,储能设备的容量要求越大,成本越高。
用户平均每天用电量大小,用户每天用电量越大,储能设备价格越高。
3、技术特长
匹配器
匹配器有效地提高整个发电系统的储电能力,为整个系统的关键环节起着重要支撑作用,有效地提高整个系统的稳定性和高效性,为整套系统节省PV板成本,降低系统造价。匹配器具有知识产权保护。
PV板吸收阳光技术
PV板能有效吸收阳光,更大程度地发挥PV板发电能力,大大提高日发电量,降低PV板成本。
4、客户需提供资料
A类、(1)系统输出最大功率;
(2)用户一天用电量,用电设备功率及各用电设备的使用时长;
(3)用户当地天气气候情况(国家、地区)。
B类、(1)用户所有用电设备及各用电设备使用时长;
(2)用户当地天气气候情况。
说明:系统一般设计为充足阳光下一天的发电,不考虑阴雨天发电,所以系统将只能承受一天的用电设备使用,客户有其它要求另外考虑。
那么影响光伏电站发电量因素:
1、太阳辐射量:太阳能电池组件是将太阳能转化为电能的装置,光照辐射强度直接影响着发电量。各地区的太阳能辐射量数据可以通过nasa气象资料查询网站获取,也可以借助光伏设计软件例如pv-sys、retscreen得到。
2、太阳能电池组件的倾斜角度:
从气象站得到的资料,一般为水平面上的太阳辐射量,换算成光伏阵列倾斜面的辐射量,才能进行光伏系统发电量的计算。最佳倾角与项目所在地的纬度有关。大致经验值如下:
a、纬度0°~25°,倾斜角等于纬度
b、纬度26°~40°,倾角等于纬度加5°~10°
c、纬度41°~55°,倾角等于纬度加10°~15°
3、太阳能电池组件转化效率
4、系统损失:和所有产品一样,电站在长达25年的寿命周期中,组件效率、电气元件性能会逐步降低,发电量随之逐年递减。除去这些自然老化的因素之外,还有组件、逆变器的质量问题,线路布局、灰尘、串并联损失、线缆损失等多种因素。
一般光伏电站的财务模型中,系统发电量三年递减约5%,20年后发电量递减到80%。
5、组合损失:
凡是串联就会由于组件的电流差异造成电流损失;并联就会由于组件的电压差异造成电压损失;而组合损失可达到8%以上,中国工程建设标准化协会标准规定小于10%。
提醒:
因此为了减低组合损失,应注意:
1)应该在电站安装前严格挑选电流一致的组件串联。
2)组件的衰减特性尽可能一致。