大家好!今天让小编来大家介绍下关于三电平光伏逆变器_光伏逆变器的发展的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.什么是三电平?2.光伏逆变器的发展
3.三相光伏并网逆变器可以直接用电池供电吗
4.单相一字型三电平逆变电路的工作原理
5.三电平有源电力滤波器的优势是什么?
什么是三电平?
问题一:三电平是什么意思? 三电平顾名思义就是三种电平:高电平V/2、零电平0V、低电平-V/2
三电平的实质就是开关阀值的问题,就是提供了三种开关状态转换。
三电平的控制技术主要使用在变频器中,三电平型变频器采用钳位电路,解决了两只功率器件的串联的问题,并使相电压输出具有三个电平。
三电平逆变器的主回路结构环节少,虽然为电压源型结构,但易于实现能量回馈。
三电平变频器在国内市场遇到的最大难题是电压问题,其最大输出电压达不到6KV,所以往往需要采用变通的方法,要么改变电机的电压,要么在输出侧加上升压变压器。这一弱点直接限制了它的广泛应用。这也是这个控制技术很多人不甚了解的最大原因。
对于单元串联多电平型变频器,主要缺点是变流环节复杂,功率元器件数目多,体积稍微大一点,但是在其他的方式不能有效解决国内应用的需要时,在高压器件实际应用的可靠性还不是太高的情况下,它的竞争优势在相当一段时间内至少最近一段时期内,可能还是没有其它更好的替代方法。
三电平电压波形是方波,当然能体现出三种不同的电压了。
变频器的电平你可以百度搜一下电平的解释就知道,这里就不多说了,变频器有单电平(一电平)、高低电平(二电平)、三电平(高低电平、零电平)等控制区别,虽然电平数不同,但是其实质还是开关阀值的状态转换而已,只不过是电路需求的控制数量不同而已。
问题二:多电平比如三电平名称的含义? 首先定义是线电压还是相电压,一般相电压是3电平,线电压就是五电平。电平是指逆变直流侧的直流电压等级,一般是三电平,就是通过开关管的作用出来3个平台,三个平台通过分割形成正弦波。
这个是三电平,正 0 负
这个是五电平,一个是相电压一个是线电压
问题三:三相三开关三电平整流是什么意思 三电平逆变器:1拓扑为在两个电力电子开关器件串联的基础上,中性点加一对箝位二极管的三电平逆变器,又称为中性点箝位型(Neutral Point Clamped,简称NPC)三电平逆变器,所示即为三相三电平NPC逆变器拓扑结构,由两个直流分压电容C1=C2、三相。
问题四:什么是三电平结构 三电平型变频器采用钳位电路,解决了两只功率器件的串联的问题,并使相电压输出具有三个电平。三电平逆变器的主回路结构环定少,虽然为电压源型结构,但易于实现能量回馈。三电平变频器在国内市场遇到的最大难题是电压问题,其最大输出电压达不到6KV,所以往往需要采用变通的方法,要么改变电机的电压,要么在输出侧加升压变压器。这一弱点限制了它的应用。
问题五:什么是单相三电平逆变器? 当今世界档缒茉嚼丛匠晌人们日常生活和工业生产中的重要能源刀
其质量和指标在不同的情况下有不同的要求。随着交流电机调速技术的逐渐
成熟蹈咝阅艽笕萘康慕涣鞯魉偌际跸缘糜任重要。三电平逆变器由于具有
输出容量大、输出电压高、电流谐波含量小、控制方法成熟简单等优点翟
中高压调速领域得到了广泛的应用。而正弦脉宽调制SPWM捶椒ㄊ侨电
平逆变器的核心技术之一。本文介绍了单相三电平逆变器的结构和基本原
理导捌SPWM控制法的原理挡⒁栽夭ㄍ向SPWM法对三电平逆变器进
行控制。
本文基于MATLAB/SIMULINK对三电平逆变电路建立模型挡⒔行开
环、闭环仿真荡佣分析了逆变器输出电压的谐波含量、电压稳定度。采用
PI调节器设计对逆变器设计了双闭环控制低时对负载能力进行研究。
关键词 三电平逆变器 正弦脉宽调制 MATLAB PI调节器错误蔽凑业
引用源。
问题六:三电平变频器的输出波形是什么样子? 下图是3300V永磁风力发电机用三骸平变流器的电压波形和电流波形,仅供参考!
问题七:三电平逆变器较二电平逆变器的优势是什么? 从实际的角度是因为谐波小,输出不需要很大的滤波器,在传输距离比较远的情况下,可以有很小的电压损失,对后期负载,比如电机冲击比较小,不需要用防护等级高的点击。至于在理论方面的区别肯定有,这个课本上都有。
问题八:三电平pwm变频器具有哪些优点 提升电压应用,输出波形好
波形好,模块耐压低
1电平的变频器是没有的。电平是两个电压之比,以对数来表示,称为相对电平;某电压与选定的标准电压相比较,以对数来表示,称为绝对电平。 在通信、电子等领域,计算放大器的增益、电路的衰耗等,都是输出/输入信号的比较,用电平来表示会有极大...
介绍了西门子采用三电平高压IGBT开发的中压变频器SIMOVERTMV、有源前端技术及应用。 关键词:高压 三电平 有源前端 1、前言 电力电子技术、微电子技术与控制理论的结合,有力地促进了交流变频调速技术的发展。近年来,具有驱动电路和保护功能的...
有过网友的采纳回答,请搜索“三电平是什么意思”即可。
三电平有源电力滤波器技术详解 作者:德州和能工业自动化有限公司 一、二极管箝位三电平技术 二极管箝位三电平拓扑由日本学者Nabae. A 等人在1980 年提出,经过近30年的发展,广泛应用于电力电子技术的各个领域。二极管箝位三电平拓扑的优势在于..
问题九:三电平电路的工作原理 TL整流器主电路如图1所示,由8个开关管V11~V42组成三电平桥式电路。假定u1=u2=ud/2,则每只开关管将承担直流侧电压的一半。以左半桥臂为例,1态时,当电流is为正值时,电流从A点流经VD11及VD12到输出端;当is为负值时,电流从A点流经V11及V12到输出端,因此,无论is为何值,均有uAG=uCG=+ud/2,D1防止了电容C1被V11(VD11)短接。同理,在0态时,有uAG=0;在-1态时,有uAG=uDG=-ud/2,D2防止了电容C2被V22(VD22)短接。右半桥臂原理类似,因此A及B端电压波形如图2所示,从而在交流侧电压uAB上产生五个电平:+ud,+ud/2,0,-ud/2,-ud。每个半桥均有三种工作状态,整个TL桥共有32=9个状态。分别如下:状态0(1,1)开关管V11,V12,V31,V32开通,变换器交流侧电压uAB等于0,电容通过直流侧负载放电,线路电流is的大小随主电路电压us的变化而增加或减小。状态1(1,0)开关管V11,V12,V32,V41开通,交流侧输入电压uAB等于ud/2,输入端电感电压等于us-u1。电容C1电压被正向(或反向)电流充电(u1
光伏逆变器的发展
电源: 待机时采用降频技术.减小启动电流.
电感: 采用非晶磁材.
电容: 采用薄膜电容.
Boost: 采用零电压开启软开关.
IGBT: 低Rds(on),低Q.
二极管: 快恢,低导通电压.
补充:
单相拓扑:采用H5,H6,H7,H4+2,(指并网型)
三相拓扑:采用三电平。
直流DC-link电容的均压:采用动态均压方法(而不是电阻均压)。电容的损耗与纹波密切相关。与电容本身的损耗角也有关。一般是日本的三个CON的品质较好,应用最多。
数字IC: 高速CMOS,不用TTL型。
Boost:采用软开,软关电路。
IGBT:注意散热。和驱动方法,驱动电压高,CE极的导通压降就低一些。与散热绝缘膜的散热系统也有关系。
继电器:可以采用PWM驱动,如1KHz。也可是半压维持。以减小功率。
通信:注意光耦的频率与限流电路。限流电阻阻率稍大,可减小功率。
磁芯:采用进口的非晶,MPP等。如日立,VAC。
LED:采用高亮型。
显示屏:背光亮度调小。或为可调型。
三相光伏并网逆变器可以直接用电池供电吗
2005至2010年,全球光伏逆变器市场规模由10.7亿美元增至71.8亿美元,年复合增长率为46.3%。欧洲、亚太地区及北美地区太阳能光伏产业的发展是光伏逆变器市场增长的主要推动力。
2007年我国光伏新增装机量仅20MW,到2010年国内光伏新增装机量约520MW,是2009年228MW装机量的2倍多。2011年我国新增装机量达到2.9GW,在全球排名第四。
2015年我国光伏逆变器需求量将达到5.0GW,2020年将达到10GW。
在我国“十一五”期间,诸如逆变器等光伏发电配套设备多处在研发和创新阶段,较少受到政策关注。“十二五”时期,光伏发电市场的趋势是向全产业链发展,晶硅、组件以外的配套设备将受到市场与政策的进一步关注,发改委将逆变器列入指导目录鼓励类,就是这一趋势的体现。
2010年,我国光伏并网容量达500兆瓦,逆变器市场在5亿元左右。目前,“十二五”国内的光伏装机容量目标大幅上调到10GW,较之前公布的目标翻了一番。假设这些装机全部并网,按照1元/瓦造价计算,预计到2015年,国内逆变器市场将达到100亿元。
随着光伏逆变器行业竞争的不断加剧,大型光伏逆变器企业间并购整合与资本运作日趋频繁,国内优秀的光伏逆变器生产企业愈来愈重视对行业市场的研究,特别是对企业发展环境和客户需求趋势变化的深入研究。正因为如此,一大批国内优秀的光伏逆变器品牌迅速崛起,逐渐成为光伏逆变器行业中的翘楚!
光伏逆变器是电力电子技术在太阳能发电领域的应用,行业技术水平和电力电子器件、电路拓扑结构、专用处理器芯片技术、磁性材料技术和控制理论技术发展密切相关。
另外,功率等级在200 瓦~500 瓦的微型逆变器,可方便地在幕墙、窗台、小型屋面上使用,在最近几年也成为一个细分市场热点。组串型光伏逆变器单相产品以升压电路+单相无变压器拓扑结构为主;组串型光伏逆变器三相产品以升压电路+三相三电平无变压器拓扑结构为主;电站型光伏逆变器以三相桥式电路拓扑为主,同时包括无变压器和有变压器两类。光伏逆变器重点关注以下技术指标:高效率:光伏逆变器的转换效率的高低直接影响到太阳能发电系统在寿命周期内发电量的多少。根据产品型号的不同,国际一流品牌的产品的转换效率最高可达98%以上。长寿命:光伏发电系统设计使用寿命一般为20 年左右,所以要求光伏逆变器的设计寿命需要达到较高水平。高可靠性:光伏逆变器发生故障将会导致光伏系统停机,直接带来发电量的损失,所以高可靠性是光伏逆变器的重要技术指标。宽直流电压工作范围:因为单块太阳电池组件的输出直流电压比较低,所以在实际应用中需要进行多块串联,得到一个较高的直流电压,再进行多组并联后输入到光伏逆变器。由于不同功率、不同电压的光伏电池、不同的串并联方案组合,要求对同一规格的光伏逆变器能够适应不同的直流电压输入。所以,光伏逆变器具有越宽的直流电压工作范围,就越能适应客户的实际应用需求。
符合电网并网要求:各国电网对于接入电网的设备都有着严格的技术要求,包括并网电流谐波、注入电网直流分量、电网过欠压时保护、电网过欠频时保护、孤岛保护等。随着大量可再生能源发电设备的接入,对电网的运行、调度提出了新的挑战,电网提出了如低电压穿越、无功补偿、储能等新要求。
单相一字型三电平逆变电路的工作原理
不可以。三相光伏并网逆变器是为将光伏板产生的电能并入公共电力网而设计的设备,通常需要接入交流电源来进行工作。而电池供电通常是直流电,直接将三相光伏并网逆变器连接到电池存在不匹配的问题,所以三相光伏并网逆变器不可以直接用电池供电。
三电平有源电力滤波器的优势是什么?
1、三电平逆变器主电路现在采用的是比较实用的二极管中点嵌位电路,通过一对中点箱位二极管分别与上下桥臂串联的二极管相联,将功率开关器件GIBTQ:~Ql:分别串联,二极管D:~D.用于嵌位电平,C:,C:均衡直流侧电压(C=IC:),并按一定的开关顺序逻辑控制产生三种相电压电平E二/2、O、一E二/2,在输出端合成正弦波。相比原来两电平电路优点显著:每个开关器件承受的电压值相当与原来直流电压的一半,波形质量得到了改普。
2、根据三电平逆变器的定义,这种逆变器结构的输出为三个电平或者说是三个状态,即(一E/2、0、+E/2),用符号相应地表示为(N、0、P)。因此,对于三相电压型逆变器一共就存在着27种输出状态。在图3.1所示的三电平逆变器主回路结构中,a、b、c三相均由四个开关共同组合构成,每一相的输出状态也就是由这四个开关的不同状态组合决定的。
三电平有源电力滤波器技术详解 作者:德州和能工业自动化有限公司
一、二极管箝位三电平技术
二极管箝位三电平拓扑由日本学者Nabae. A 等人在1980 年提出,经过近30年的发展,广泛应用于电力电子技术的各个领域。二极管箝位三电平拓扑的优势在于,各个开关管承受的反向电压为直流母线电压的一半,可以用较低电压等级的开关管,组成较高电压等级的变流器。这个技术现在已经广泛的应用于中压大功率交流传动系统中。采用6500V等级的IGBT或IGCT的三电平中压变频器,已经广泛应用于4.2kV电动机传动系统。通常三电平技术一般应用于电压较高、功率较大的系统中,正是由功率器件耐压有限与变流器系统需求电压较高的矛盾现实决定的。但是我们应该看到二极管箝位三电平拓扑本身固有的一些优势。
(1) 用电压等级较低的开关管构成电压等级较高的变流器,随着功率器件技术的不断发展,市场上已经有6500V的IGBT出售,但是耐压越高的IGBT其开关损耗越高,最高开关频率也变得比较低。3300V以上的IGBT开关频率最高不会超过5kHz,1200V的IGBT的开关损耗远大于600V的IGBT。采用低压IGBT的三电平变流器的开关损耗远低于同样电压等级采用高压IGBT的两电平变流器,同时前者可以达到的开关频率也高于后者。
(2) 能够输出三种电平。二极管箝位三电平变流器能够输出正母线电压、负母线电压以及零电压(简称P、N、O),一般情况下输出电压在P-O、O-N之间跳变,特殊情况下会出现P-N跳变,而两电平变流器只能在P-N之间跳变。也就是说三电平的电压跳变幅度为直流母线电压的一半,而两电平的为直流母线电压。高的电压跳变幅度对并网逆变器或有源电力滤波器带来的是较高的纹波电流,为了抑制纹波电流,需要较大的输出电感和滤波电容,由此带来了较高的纹波电流损耗。同时由于输出滤波电感电容也降低了电流响应速度,或对输出电流的能力产生了一定的限制。对于变频器带来的则是对电机的冲击以及较大的轴电流,严重影响着电机的寿命。另外,较高的电压跳变幅度也会产生严重的电磁干扰,对周边电子设备产生也重危害。而三电平以其固有的优势,在很大程度上解决了上述问题。
随着技术的不断发展,三电平技术被越来越多的人所重视,同时也将其从中压大功率领域,引入到400V的低压小功率应用之中,各个国际知名功率器件厂家推出了大量适应于400V系统应用的集成二极管箝位三电平功率模块,并有逐渐取代传统两电平变流器的趋势。应用于400V领域的成功的三电平产品如下:
(1)2008年日本安川电机推出了Varispeed G7系列通用矢量变频器,其400V产品采用三菱的三电平功率模块,并在应用中取得了巨大成功。
(2)2009年德州和能工业自动化有限公司在自主开发的三电平变流器控制技术的基础上,推出了HEINV系列三电平光伏并网逆变器,前端采用对称BOOST进行最大功率点跟踪,逆变器采用二极管箝位三电平拓扑,两者相互配合,采用Semikron的三电平功率模块,各项指标均优于同类两电平产品。
(3)2009年德州和能工业自动化有限公司推出了业界第一个三电平有源电力滤波器HESINE系列产品,并取得了巨大的成功。本文将对此系列产品做一个较为详细的说明。
二、Hesine系列有源电力滤波器
将二极管箝位三电平技术应用于有源电力滤波器领域,国内外很多文献都有涉及,国内外许多专家学者对此都进行了比较深入的研究,也提出了很多新的算法。但是,三电平有源电力滤波器始终没有从实验室走向市场。究其原因,有可能是技术不够成熟,控制算法过于复杂,应用成本高,也可能是企业界对此不够重视,尚未认识到该技术的优势。德州和能工业自动化有限公司通过对三电平技术的深入研究以及对市场趋势的正确把握,在业界首先推出了三电平有源电力滤波器产品。
三电平有源电力滤波器与传统两电平有源电力滤波器相比有以下优势:
(1) 低纹波电流,高电流响应速度。
纹波电流和电流响应速度是矛盾的两个指标。作为有源电力滤波器,其基本原理是检测负载谐波,注入反相谐波,以谐波的相互抵消达到滤波的目的。一般的有源电力滤波器是一个电流模式控制的电压源逆变器。输出电流是通过逆变器输出的电压作用在输出电感上产生的。逆变器采用脉冲宽度调制,根据电工的基本原理,纹波电流决定于开关频率、直流母线电压、输出电感的大小,与电流环的控制无关。开关频率越高纹波电流越小、直流母线电压越高,纹波电流越大;输出电感越大,纹波电流越小。而逆变器期望的输出电流是由电流环所控制。有源电力滤波器输出谐波电流,如果按基波50Hz,补偿50次谐波计算,最高谐波频率将达到2.5kHz。有源电力滤波器对电流响应速度有很高的要求。电流响应速度与直流母线电压和输出电感大小有关。直流母线电压越高,电流响应越快;输出电感越大,电流响应越慢。我们期望输出纹波电流越小越好,电流响应速度越快越好,这是一对矛盾。从上述分析可以看出,两电平有源电力滤波器解决这个矛盾的办法只能是提高开关频率。现在某些厂家的两电平有源电力滤波器产品的开关频率已经达到20kHz。但是,开关频率的提高带来的是更高的开关损耗以及驱动损耗,有源电力滤波器的单机容量会受到限制,而对于更高电压等级的有源电力滤波器,高压的IGBT根本就不允许那么高的开关频率。然而,三电平有源电力滤波器从原理上就是一个解决上述问题的方案。三电平逆变器可以输出正、负、零三种电压,在计算纹波电流时,只需按直流母线电压的一半计算。由此,在相同开关频率、相同直流母线电压、相同纹波电流要求的前提下,三电平的输出电感为两电平的一半,同时器件的开关损耗和电感上的纹波损耗也会降低。在计算电流响应速度时,起作用的将是全部直流母线电压,而输出电感的减半,将加快电流的响应速度,增强滤波效果,提高单机容量。
(2) 提高系统耐压,应用于较高电压系统。
通常国内低压电网为400V,但是对于某些行业,其低压电网会比较高,例如石油钻机传动采用的是600V,矿山用电可能是690V或1140V,而某些行业的电压等级可能更加多样,但一般都是500V以上。如何解决这些行业谐波治理需求,是一个问题。通常为了提高电流响应速度、保证补偿效果,处理谐波的有源电力滤波器比处理基波的变频器或并网逆变器需要更高的直流母线电压。通常两电平逆变器的直流母线电压是交流电网电压有效值的2倍。对于380V应用,直流母线电压一般在700V~750V,而对于600V,直流母线电压需要达到1200V。很多企业的做法是加一个变压器,将其他等级的电压变为400V。通过谐波的变压器是经过特殊设计的,价格比较高,体积也比较大,变压的损耗也会比较大。而采用三电平技术,可以用耐压较低的管子组成耐压较高的变流器系统,可以直接连接到电压较高的电网上,同时保证较好滤波效果和单机容量。
正是基于上述优点,德州和能工业自动化有限公司在本公司三电平变流器控制技术的基础上,紧密跟踪行业发展趋势,推出三电平有源电力滤波器产品。同时,我公司愿与业内同行企业合作,共同推进三电平有源电力滤波器的应用,为中国电能质量事业做出贡献。