大家好!今天让小编来大家介绍下关于光伏并网逆变器效率优化研究_影响光伏电站系统效率的关键因素识别的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.光伏并网逆变器效率优化研究2.影响光伏电站系统效率的关键因素识别
3.光伏并网逆变器效率仿真
我这有资源 可以看下? 太阳能光伏并网发电及其逆变控制(第2版)https://pan.baidu.com/s/1Cv7vxFGuL1WPiTnMcHRYXA?pwd=1234
提取码:1234本书以“太阳能光伏发电技术”以及“电力电子技术”理论为基础,从光伏并网发电系统与并网逆变控制角度出发,深入浅出地讨论了太阳电池技术、光伏并网系统的体系结构、光伏并网逆变器的电路拓扑、光伏并网逆变器控制策略、大功率点跟踪技术、并网光伏发电系统的孤岛效应及反孤岛策略、阳光跟踪聚集技术、光伏并网系统的低电压穿越及相关标准等内容,为光伏并网发电技术的应用与研究提供了理论基础。
影响光伏电站系统效率的关键因素识别
目前光伏逆变器行业国际领军者是德国艾斯玛(SMA)公司,技术处在行业的顶点。国内比较有实力的并网逆变器企业有:合肥阳光电源、三 晶新能源、中达电通、山亿新能源、北京科诺伟业、艾索新能源等;而离网逆变器的技术发展相对较成熟,国内已拥有一批技术较领先的企业。
1.要求具有较高的效率。由于目前太阳电池的价格偏高,为了最大限度地利用太阳电池,提高系统效率,必须设法提高逆变器的效率。
2.要求具有较高的可靠性。目前光伏发电系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器具有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如输入直流极性接反保护,交流输出短路保护,过热、过载保护等。
3.要求直流输入电压有较宽的适应范围,由于太阳电池的端电压随负载和日照强度而变化,蓄电池虽然对太阳电池的电压具有重要作用,但由于蓄电池的电压随蓄电池剩余容量和内阻的变化而波动,特别是当蓄电池老化时其端电压的变化范围很大,如12V蓄电池,其端电压可在10V~16V之间变化,这就要求逆变器必须在较大的直流输入电压范围内保证正常工作,并保证交流输出电压的稳定。
4.在中、大容量的光伏发电系统中,逆变电源的输出应为失真度较小的正弦波。这是由于在中、大容量系统中,若采用方波供电,则输出将含有较多的谐波分量,高次谐波将产生附加损耗,许多光伏发电系统的负载为通信或仪表设备,这些设备对电网品质有较高的要求,当中、大容量的光伏发电系统并网运行时,为避免与公共电网的电力污染,也要求逆变器输出正弦波电流。
编辑本段
工作原理
逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V,在中、小容量的逆变器中,由于直流电压较低,如12V、24V,就必须设计升压电路。
中、小容量逆变器一般有推挽逆变电路、全桥逆变电路和高频升压逆变电路三种,推挽电路,将升压变压器的中性插头接于正电源,两只功率管交替工作,输出得到交流电力,由于功 光伏并网逆变器率晶体管共地边接,驱动及控制电路简单,另外由于变压器具有一定的漏感,可限制短路电流,因而提高了电路的可靠性。其缺点是变压器利用率低,带动感性负载的能力较差。
全桥逆变电路克服了推挽电路的缺点,功率晶体管调节输出脉冲宽度,输出交流电压的有效值即随之改变。由于该电路具有续流回路,即使对感性负载,输出电压波形也不会畸变。该电路的缺点是上、下桥臂的功率晶体管不共地,因此必须采用专门驱动电路或采用隔离电源。另外,为防止上、下桥臂发生共同导通,必须设计先关断后导通电路,即必须设置死区时间,其电路结构较复杂。
编辑本段
控制电路工作
上述几种逆变器的主电路均需要有控制电路来实现,一般有方波和正弦波两种控制方式,方波输出的逆变电源电路简单,成本低,但效率低,谐波成份大。正弦波输出是逆变器的发展趋势,随着微电子技术的发展,有PWM功能的微处理器也已问世,因此正弦波输出的逆变技术已经成熟。
1.方波输出的逆变器
1.方波输出的逆变器目前多采用脉宽调制集成电路,如SG3525,TL494等。实践证明,采用SG3525集成电路,并采用功率场效应管作为开关功率元件,能实现性能价格比较高的逆变器,由于SG3525具有直接驱动功率场效应管的能力并具有内部基准源和运算放大器和欠压保护功能,因此其外围电路很简单。
2.正弦波输出的逆变器
2.正弦波输出的逆变器控制集成电路,正弦波输出的逆变器,其控制电路可采用微处理器控制,如INTEL公司生产的80C196MC、摩托罗拉公司生产的MP16以及MI-CROCHIP公司生产的PIC16C73等,这些单片机均具有多路PWM发生器,并可设定上、下桥臂之间的死区时间,采用INTEL公司80C196MC实现正弦波输出的电路,80C196MC完成正弦波信号的发生,并检测交流输出电压,实现稳压。
编辑本段
主电路功率器件的选择
逆变器的主功率元件的选择至关重要,目前使用较多的功率元件有达 小功率的光伏并网逆变器设计图林顿功率晶体管(BJT),功率场效应管(MOS-FET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等,在小容量低压系统中使用较多的器件为MOSFET,因为MOSFET具有较低的通态压降和较高的开关频率,在高压大容量系统中一般均采用IGBT模块,这是因为MOSFET随着电压的升高其通态电阻也随之增大,而IGBT在中容量系统中占有较大的优势,而在特大容量(100kVA以上)系统中,一般均采用GTO作为功率元件。
光伏逆变器 并网逆变器 太阳能逆变器SolarMax的光伏逆变器规格全,既有小功率的组串逆变器,又有大功率的集中式逆变器,随着中国光伏发电市场的迅速发展,SolarMax逆变器必然会被越来越多的中国客户使用。
光伏并网逆变器效率仿真
光伏系统的能量流路径上通常包含光伏阵列、汇流箱、直流配电柜、并网逆变器、交流配电柜及各环节之间的连接线缆。如下图所示。
基于光伏系统的能量流,在光伏系统设计时需充分考虑一些对光电转换效率影响的重要因素:
1、气象环境因素对光伏组件光电转换效率的影响
太阳能光伏组件长期暴露在自然环境中,风雨雷电等因素都会对太阳能光伏电池产生影响,光照、风力、温度等都会形成对太阳能光伏组件(电池)光电转换效率的改变,有些因素甚至能造成太阳能光伏电池功能和结构的损坏,应在太阳能光伏电站设计工作充分开展气象和环境监测数据的收集。
2、太阳能光伏电池组件倾角对光电转换效率的影响
太阳能光伏组件需要以最佳的角度吸收阳光,这样才能真正起到提高光电转换效率的作用,在不同季节、不同地理位置、不同日照条件下,太阳能光伏组件的最佳角度也会有很大的变化,要根据季节、经纬度和日照时间的变化积极调整太阳能光伏组件的倾角。固定倾角应选择全年综合发电量最大的倾角安装。
3、太阳能光伏组件表面清洁度对光电转换效率的影响
太阳能光伏组件表面清洁度,影响光电转换。需对太阳能光伏组件在环境中受到污染的实际情况进行了解,确定污染物沾染光伏组件表面的情况,特别需要注意大风、强对流和沙尘暴天气对光伏电池表面的影响,再根据当地人工成本确定光伏组件的清洗频率。
4、太阳电池方阵间距设计对光电转换效率的影响
光伏组件表面一旦被遮挡,将会影响电站的发电能力,因此在光伏组件方阵间距设计时,必须要考虑周围建(构)筑物对光伏组件的遮挡以及组件方阵之间的自遮挡问题。
5、MPPT跟踪精度对系统效率的影响
随着辐照度和温度的改变,光伏阵列的输出端电压随之改变,从而光伏阵列的输出功率也将改变。光伏逆变器的最大功率点跟踪(MPPT)目的是使光伏阵列在辐照度和温度改变时仍能获得最大功率输出,因此MPPT的精度很大程度上影响了系统的效率。
6、综合考虑并网系统各环节损耗及系统匹配等因素对效率的影响
光伏阵列在能量转换与传输过程中的损失包括:
组件匹配损失:应避免不同受光条件的组件串联造成的系统损失;
偏离最大功率点损失:如温度的影响、最大功率点跟踪(MPPT)精度等引入的发电损失;
直流线路损失:按有关标准规定,线缆损失需控制在一定范围内;
逆变器的转换损耗: 逆变器的直/交转换过程中因所处运行功率点不同而影响效率;
交流并网环节的损耗:从逆变器输出至高压电网的传输效率,主要考虑变压器效率。
辐射度和温度只能对光伏阵列输出产生影响,而逆变器只能通过MPPT来追踪电池板的最大效率,逆变器的效率跟辐射度肯定没有关系,但是我建议你做一个温度对逆变器的影响仿真,因为我们平时做效率就要等整台逆变器温升达到平衡后才做。