大家好!今天让小编来大家介绍下关于光伏太阳能板技术研究大学_太阳能光伏发电技术属于哪个专业的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.求推荐研究生用的光伏发电教材2.太阳能光伏发电技术属于哪个专业
3.河南省光伏材料重点实验室的研究方向
4.有关太阳能电池的参考文献有哪些
求推荐研究生用的光伏发电教材
太阳电池及其应用
赵富鑫 魏彦章 主编
国防工业出版社
1985年2月第一版
内容简介
本书比较全面地介绍了太阳电池的原理、设计、制造、测试以及应用实例;同时介绍了国内外一些新型太阳电池的研究情况。可供具有高中以上文化程度的从事太阳电池研究、设计、制造及实际应用的各类工程技术人员阅读,也可供大专院校师生作为新能源方面的教学参考书。
序言
太阳电池,又称光伏电池,是一种可将太阳光能直接转换为电能的半导体器件。1954年第一个实用的硅太阳电池在美国贝尔实验室制成以后,不久即被人造卫星使用。迄今为止,翱翔于太空的成千个飞行器中,大多数都配备了太阳电池发电系统。1973年的能源危机,促进了太阳电池地面应用的发展。许多由太阳电池供电的航标灯、微波中继站、铁路信号标志、光电水泵等等已在世界各地运行,功率从几瓦到几万瓦不等。使用太阳电池电源供电的电视机、收音机、钟表、照明灯、小型计算器等,在输电困难的山区、牧区、沙漠地区已受到人们的欢迎。1981年世界太阳电池的年产量已高达6兆瓦。
为扩大太阳电池的应用,人们对太阳电池的材料、结构和工艺等各方面进行了大量的研究工作。除了单晶硅电池以外,已研制成功坤化镓电池、硫化镉电池、多晶硅电池、硅带电池、无定形电池、聚光电池、多结电池、光电化学电池等多种新型太阳电池。二十多年来,随着结构和工艺不断改进,单晶硅太阳电池的实际效率已增加三倍多(从6%增至20%),成本已有了大幅度的下降。当前,无论从成本或效率来讲,硅太阳电池都已日趋实用化。
我国从1958年开始研制硅太阳电池。我国自行设计制造的太阳电池电源已成功地应用于人造卫星、交通、邮电、农牧业、轻工业、通讯、气象及军事部门,并已远销国外。对于新型的太阳电池,我国也积极地进行了研究探索,在某些方面已可与国际水平相比。
这些年来,国内已出版过一些有关太阳电池的书籍,但还没有一本内容比较完整、能反映现代水平、并结合国内经验的专门书籍。即从国外来看,这方面的专着也不多。为了适应这一新兴学科的迅速发展,本书编者接受国家科委和电子工业部的委托,结合国内情况编写了这本比较系统的阐述太阳电池的原理、设计、制造及应用方面的书。
本书对太阳电池进行了一定的理论分析,具有一定的理论水平;又较丰富地介绍了制造、测试、应用等方面的技术,因而比较实用。可供从事太阳电池研制及实际应用的各类工程技术人员阅读,也可供本专业的培训班或大专院校师生作为教学参考书。
本书共分八章。第一章简要介绍太阳辐射能。第二章概述太阳电池的物理基础,从而比较系统地叙述了光生伏打效应的机理以及同质结、异质结、肖特基结太阳电池的工作原理。第三章是关于硅太阳电池制造工艺方面的叙述。结合国内实际生产及研究期刊,作了必要的述评。第四章介绍了太阳电池的标定及有关参数的测试。第五章叙述太阳电池发电系统的结构设计,包括方阵组合、蓄电池及电子线路。第六章介绍近几年正在研究发展的一些太阳电池,包括新材料和新结构的研究情况。第七章专门讨论聚光太阳电池及聚光系统。第八章较全面地介绍了太阳电池在我国的实际应用情况及所取得的经济效果。在后记中,简述了对太阳电池的展望。
本书由西安交通大学赵富鑫教授、天津电源研究所魏彦章副总工程师主编。第一章由西安交通大学秦蕙兰编写;第二章由西安交通大学崔容强编写;第三章由天津电源研究所包诞文编写;第四章由天津电源研究所于培诺编写;第五章由天津电源研究所唐军编写;第六章由天津电源研究所李金其编写;第七章由天津电源研究所胡宏勋、赵海滨编写;第八章由电子工业部电子技术推广应用研究所王长贵编写;昆明师范学院陈庭金为本书编写过若干部分。王长贵、张丞源、于培诺、李金其、崔容强还担任了全书编辑及校对工作。为本书提供过材料的同志有:郑彝益、张德群、周跃忠、由志德、赵秀田、李中全、刘生、徐抗、陈文俊等。在此,编者表示感谢。
限于编写时间及编者水平,难免有不是错误,敬希读者指正为感。
编 者
目 录
符号表·································
太阳辐射能·····················
§1.1 太阳的结构和太阳辐射能的来源
§1.2 大气层外的太阳辐射光谱(AM 0)
§1.3 地球表面上的太阳辐射光谱(AM1,AM1.5,AM2)
§1.4 日照量的计算和测量
§1.5 太阳能的特点
§1.6 世界和我国太阳能资源的分布情况
太阳电池原理···················
§2.1 太阳电池的分类
§2.2 太阳电池的物理基础
§2.3 太阳电池材料的光学性质
§2.4 同质结太阳电池
§2.5 肖特基结太阳电池
§2.6 异质结太阳电池
硅太阳电池工艺·················
§3.1 硅材料的选择
§3.2 硅片的表面准备
§3.3 制结
§3.4 除去背结
§3.5 制作上下电极
§3.6 腐蚀周边
§3.7 蒸镀减反射膜
太阳电池的标定和测量···········
§4.1 太阳电池的标定
§4.2 复现
§4.3 光谱响应的测量
§4.4 太阳电池伏安曲线及串联电阻的测量
§4.5 基区少子扩散长度和寿命的测量
太阳电池发电系统··············
§5.1 概述
§5.2 太阳电池组件
§5.3 太阳电池组件的封装材料
§5.4 太阳电池组件的制造工艺过程
§5.5 蓄电池
§5.6 太阳电池发电系统的设计
§5.7 太阳电池方阵/蓄电池电源系统的测量
其它太阳电池···················
§6.1 硫化镉薄膜太阳电池
§6.2 多晶硅太阳电池
§6.3 带(片)状硅和薄膜硅太阳电池
§6.4 多结太阳电池
§6.5 导体—绝缘体—半导体太阳电池
§6.6 无定形硅太阳电池
§6.7 光电化学电池
聚光太阳电池和聚光系统··········
§7.1 聚光硅太阳电池
§7.2 各种聚光太阳电池
§7.3 太阳聚光器
§7.4 太阳跟踪装置
太阳电池的实际应用············
§8.1 卫星电源和空间电站
§8.2 航标灯电源
§8.3 铁路信号灯电源
§8.4 农牧业设备电源
§8.5 广播、电视、通信设备电源
§8.6 太阳电池的其它应用
§8.7 使用、维护和保养
附录································
附录1 太阳辐射能量光谱分布数据····
附录2 一些重要太阳电池材料的特性······
附录3 硅掺杂浓度和电阻率的关系········
附录4 太阳电池的分类及其主要参数·······
后记··································
太阳能光伏发电技术属于哪个专业
能源与动力工程专业。
能源与动力工程致力于传统能源的利用及新能源的开发,和如何更高效的利用能源。能源既包括水、煤、石油等传统能源,也包括核能、风能、生物能等新能源,以及未来将广泛应用的氢能。
动力方面则包括
内燃机、锅炉、航空发动机、制冷及相关测试技术。2012年教育部新版高校本科专业目录中调整热能与动力工程为能源与动力工程。
河南省光伏材料重点实验室的研究方向
这个应该没有这个专业,由于大学的课程设置很多专业都能拉上边,但是没有特别专业的,比如光信息科学科学与技术,我认为学的较多,再者我是建筑环境与设备工程的,我们学校两个专业都有,而且,我们专业会分出一部分人学习太阳能与建筑一体化,学这个的一般都是定向的有单位定向培养的,你这个据我所知应当是研究生研究比较多的课程
我是山东建筑大学
有关太阳能电池的参考文献有哪些
一:多晶硅提纯技术的研究
物理法提纯多晶硅技术的研究包含2个课题:(1)电子束熔融法多晶硅提纯技术研究;(2)区域熔化多晶硅提纯技术研究。
电弧炉电子束熔融法实施方案是:先利用高真空电弧炉反复烧结使得多晶硅的纯度达到5N以上,在电子束熔融的最后阶段,在保护气体中加入含氧、含氢和含氯气体,它们和B杂质发生反应,形成可挥发物质,达到去除杂质的目的;将初步提纯的材料在区熔单晶炉中进一步提纯到太阳能级以上。
电弧炉电子束熔融法的技术关键在于熔融多晶硅在真空中定向凝固,使得杂质在表面挥发,其主要的问题是如何将熔体内的杂质传输到熔体表面,以致它们能从表面挥发。当熔体体积较大时,内部的杂质往往不能及时传输到表面。为了解决这个问题,可以利用快速抽出保护气,使得气相中的杂质浓度始终很低,促使熔体中的杂质尽快挥发;另一个问题是与坩埚直接接触的多晶硅熔化不充分,也不利于杂质向液相、汽相的转移。这个问题可以利用电磁等离子法,使得熔体和坩锅壁四周不直接接触,从而增加熔体的表面积,导致熔体中杂质的尽快挥发。由于B元素的饱和蒸汽压(10-4Pa)远小于Si的饱和蒸汽压(10-1Pa),所以不能用这种方法去除B杂质,这需要在提纯的最后阶段对熔体吹气来增加B的饱和蒸汽压。
区熔法显著的特点是不用坩埚盛装熔融硅,而是在高频电磁场作用下依靠硅的表面张力和电磁力支撑局部熔化的硅液。因此,区熔法又称为悬浮区熔法。区熔提纯的原理是:根据熔化的晶体在再结晶过程中因杂质在固相和液相中的浓度不同而达到去除多晶硅中含有的碳、磷等杂质。区域熔化提纯法的最大优点是其能源消耗比传统方法减少60%以上。目前,区域熔化提纯法是最有可能取代传统工艺的太阳能级多晶硅材料的生产方法。REC公司已在2006年新工厂中开始使用了区域熔化提纯法。
本研究方向的目标:是开发出有自主知识产权的物理法太阳能级多晶硅提纯技术并使之产业化,减少多晶硅提纯过程中的环境污染与能耗,降低光伏发电的成本。
三年内获得科研项目3-5项,申请国家专利2-3项,发表国家核心期刊以上研究论文3-5篇,培养博士和硕士研究生6人。
二:硅薄膜太阳能电池材料的研究
硅薄膜太阳能电池材料的研究内容包括:1、非晶硅薄膜的研究;2、多晶硅薄膜材料的研究。
目前,在太阳能电池材料中应用最多的是单晶硅和多晶硅,但由于晶体硅的生长工艺的复杂性和对硅材料的浪费使其成本居高不下。因此,薄膜硅太阳能电池被认为是大幅度降低成本的根本出路,是今后硅太阳能电池研究的热点和主流方向,将在太阳能电池市场上占据主导地位,硅基薄膜太阳能电池的材料主要有非晶硅薄膜和微晶硅薄膜。
1、非晶硅薄膜的研究
非晶硅薄膜太阳能电池具有光吸收系数大,薄膜所需厚度相对其他材料要小得多;制作工艺简单,能耗少,可实现大面积连续化生产;可用玻璃或不锈钢等材料作衬底,容易降低成本;可做成叠层结构,提高效率等优点。但是,非晶硅薄膜太阳能电池也存在Staebler-Wronsk效应、沉积速率低、在薄膜沉积过程中存在大量的杂质,影响薄膜的质量和电池的稳定性等主要问题。针对上述问题,实验室计划深入探索玻璃基上ZnO薄膜的溅射或PECVD生长工艺,以期获得晶粒尺寸可控、光电性能优越的高质量ZnO多晶薄膜,研究元素掺杂对ZnO薄膜折射系数的改变以及对导电性、透光性和减反射性的影响;进一步完善硅薄膜的PECVD生产工艺,对温度(T)、压力(P)、频率(f)、电压(V)、化学源(S)等参数进行优化,减少电子或空穴陷阱浓度,减少电子-空穴复合中心和复合几率,进一步提高电池转换效率;研究ZnO薄膜表面的处理工艺和缓冲层设计,降低电池光致衰减效应;改善制备工艺,提高大面积非晶硅薄膜的稳定性。
2、微晶硅薄膜的研究
非晶硅薄膜太阳能电池效率的光致不稳定性是由材料微结构的亚稳态属性决定的,因此S-W效应不易完全消除。近年来又出现了多(微)晶硅薄膜电池,用多晶硅薄膜代替非晶硅薄膜作电池的有源层,在长期光照下没有明显的衰退现象。它是将多晶硅薄膜生长在低成本的基底材料上,用较薄的晶体硅层作为电池的激活层,不仅能保持晶体硅电池的高性能和稳定性,还可避免S-W效应,有效降低电池的成本。
目前,多晶硅电池中的关键问题是材料本身的光电性能较差、沉积速率较低。因此,实验室在这方面的研究重点主要集中在提高薄膜的沉积速率,完善高速优质多晶硅薄膜沉积相图的数据;研究沉积气压和流量对薄膜光电特性的影响和微结构、光电性质与稳定性的关系,优化成膜工艺,获得光电性能稳定的器件质量及多晶硅薄膜。如何制备缺陷密度很低的本征层,以及在比较低的工艺度下制备非晶硅含量很低的微晶硅薄膜,是进一步提高微晶硅太阳能电池转换效率的研究关键。
研究目标:在非晶硅、微晶硅薄膜材料的研究中,拓宽光吸收区和增加光吸收系数,提高光电转换效率,优化成膜工艺,以制备性能稳定、价格低廉的硅基太阳能电池。
三年内获得各种科研项目3-5项,申请国家专利2-3项,发表国家核心期刊以上研究论文8篇以上,培养博士和硕士研究生9人。
三:非硅基太阳能光伏材料与技术研究。
非硅基薄膜太阳能电池的研究内容包括:1、染料敏化纳米晶太阳能电池;2、有机-无机复合薄膜太阳能电池;3、CIS薄膜太阳电池的研究。
1、染料敏化纳米晶太阳能电池
目前,围绕染料敏化纳米晶太阳能电池存在两大主要难题,即液态电池的稳定性和固态电池的光电转换效率改善问题。实验室拟开展染料敏化剂、固态电解质、新型电极材料的研究。在染料敏化剂方面主要探寻新型有机染料替换常用的Ru络合物敏化剂,合成TiO2与其他无机半导体化合物的复合材料,实现无机复合材料敏化,对TiO2的离子位掺杂有效改变其能带结构,用金属或非金属进行单、双掺杂进行掺杂敏化。在固态电解质研究方面利用碳纳米管所特有的导电性和物质储藏功能,在碳纳米管中填充对于提高电池性能具有重要作用的Li盐和CuI等,对填充碳纳米管的外壁进行高分子接枝修饰,改善它与基体的相容性,将接枝复合碳纳米管进一步与基体高分子进行复合构成固态电解质层。在新型电极材料研究方面以功能性染料敏化纳米TiO2多孔膜,以共轭聚合物为空穴传输介质,改善聚合物与染料表面的相容性,增强界面电荷注入和传输速率,在导电玻璃与多孔TiO2界面引入致密的阻挡层,降低背电子传输几率,研究聚合物成膜工艺,提高其在染料敏化TiO2孔穴中的填充效率。通过水热法、电化学法等合成纳米管、核壳结构纳米颗粒等TiO2纳米结构,提高电池的转换效率。探索非TiO2的无机纳米电极材料,如ZnO,BaSnO3,Zn2SnO4等。
2、有机-无机复合薄膜太阳能电池
20世纪80年代发展起来的有机-无机复合半导体材料通过结构复合、功能复合而兼具了有机材料的设计多样性、柔性、易加工性和无机材料的高载流子迁移率、高稳定性两者的优点,并往往产生协同优化效应,是一类含有两种及两种以上有机和无机组份并具有半导体性质的新型复合功能材料,成为未来能源发展的关键材料之一。
有机-无机复合太阳能电池有简单的结构,一般是在透明导电玻璃上采用简单的旋涂工艺或真空蒸发技术制作有机层和无机层,制成体异质结结构,然后真空蒸发铝电极。有机层的主要作用是实现宽光谱高效率的光吸收,而无机半导体材料的作用在于实现电荷分离、提高输运性能。这样从原理上避免了必须使用窄带隙半导体材料才能实现宽光谱吸收的限制,而可以使用具有光、热、化学稳定性的宽禁带半导体材料,这一方面可解决窄带隙半导体材料中普遍存在的光腐蚀、光致衰退等问题,另一方面可使用低成本、环境友好的ZnO,TiO2等宽禁带半导体材料,减少生产过程中废弃物造成的环境污染。但是有机半导体载流子迁移率较低,稳定性差,有机-无机复合半导体材料结构稳定性较差,导致电池性能工艺重复性较差。
实验室将重点研究有机-无机复合半导体材料在光、热等外场作用下结构的演化与控制以及稳定化途径,高载流子迁移率的有机-无机复合半导体材料,有机-无机复合半导体材料结构与载流子长程输运性能的关系以及高载流子迁移率的实现途径,合成各种新的有机小分子,筛选量子产率较高的有机分子作为吸光层,对由有机半导体材料和无机半导体材料组成的各种体系进行系统研究。
3、CIS薄膜的研究
CIS薄膜太阳能电池是由铜、铟、硒等金属元素组成的直接带隙化合物半导体材料,其对可见光的吸收系数是所有薄膜电池材料(a-Si、CdTe等)中最高的,而原材料的消耗却远低于传统晶体硅太阳电池,具有广泛的发展前景。CIS太阳电池有三大突出的特点:①转换效率高,CIS是高效薄膜太阳电池的最有前途的光伏材料。② 制造成本低:吸收层薄膜CuInSe2是一种直接带隙材料,光吸收率高达105量级,最适于太阳电池薄膜化,电池厚度可以做到2~3μm,降低了昂贵的材料消耗。其成本是晶体硅太阳电池的1/2~1/3。③电池性能稳定,利用实验室的薄膜生长系统正在开展薄膜太阳能电池的研发,通过更改CIS薄膜太阳电池的窗口材料,来进一步提高转换效率。目前采用ZnO薄膜作为窗口材料,使转化效率从6.5%提高到9.5%。
研究目标:提高CIS薄膜太阳电池的转化效率,完善制备工艺,为产业化奠定基础。继续改进燃料敏化太阳能电池各个组元的性能,不断提高电池的光电转化效率。研究开发有机-无机复合半导体材料为基础的薄膜太阳能电池,提高其结构稳定性和光电转换效率,降低材料的生产成本。
三年内获得各种科研项目2-3项,申请国家专利3项,发表国家核心期刊以上研究论文10篇以上,培养博士和硕士研究生12人。
组建光伏材料省级重点实验室的总体目标是针对开发“光伏材料与技术”这一行业发展中的重大技术问题进行攻关,持续不断地创造新成果,开发新技术,并进行工程化研究,为产业化提供成熟、配套的技术、工艺、装备和新产品;实行开放服务,接受行业或部门以及企业、科研机构等单位委托的工程技术研究、设计、实验和成套技术服务,并为其成果推广提供咨询;培养、聚集相关专业的高层次的工程技术人才和管理人才,为本省行业、企业提供工程技术人才培训;开展多种形式的国际、国内科技合作与交流,开展相关的标准制定工作和行业信息服务,促进行业、领域的技术发展。
[1-1] 师宇腾.太阳能光伏阵列模拟器综述.电源技术.2012.2
[1-2] 董振利.基于DSP与dsPIC的数字式太阳能电池阵列模拟器研究[D].合肥:合肥工业大学,2007
[1-3] 刘志强.10kW光伏并网逆变器的研制[D].北京:北方工业大学,2011
[1-4] 赵玉文.太阳能光伏技术的发展概况.第五届全国光伏技术学术研讨会论文集.1998
[1-5] BennerJP,KazmerskiL. Photovoltaicsgaininggreatervisibility. SPeetrum,IEEE.1999,36(9):34-42
[1-6] 余蜜.光伏发电并网与并联关键技术研究:[博士学位论文].武汉:华中科技大学,2009
[1-7] 许颇.基于源型逆变器的光伏并网发电系统的研究:[博士学位论文].合肥:合肥工业大学,2006
[1-8] 林安中,王斯成.国内外太阳电池和光伏发电的进展与前景.太阳能学报,增刊. 1999:68-74
[1-9] 汪海宁.光伏并网功率调节系统及其控制的研究:[博士学位论文].合肥:合肥工业大学,2005
[1-10] 周德佳.太阳能光伏发电技术现状及其发展,电气应用. 2007
[1-11] 曹伟.基于DSP的数字光伏模拟器研究[D].合肥:合肥工业大学,2009.
[1-12] 韩珏.太阳能电池阵列模拟器的研究和设计[D].杭州:浙江大学,2006.
[1-13] OLILLA J. A medium power PV-arraysimulator with a robust control strategy. Tampere,
Finland: Tampere University
of Technology, 1995, IEEE: 40.
[1-14] 韩朋乐.数字式光伏电池阵列模拟器的研究与设计[D].成都:电子科技大学,2009.
[2-1] 董密.太阳能光伏并网发电系统的优化设计与控制策略研究:[博士学位论文]. 长沙:中南大学,2007.
[2-2] 吴忠军,刘国海,廖志凌.硅太阳电池工程用数学模型参数的优化设计.电源技术. 2007.
[2-3] 苏建徽,余世杰,赵为.硅太阳电池工程用数学模型.太阳能学报. 2001.
[2-4] 裴云庆.开关稳压电源的设计和应用[M].北京:机械工业出版社,2010.
[2-5] 孙孝金.太阳能电池阵列模拟器的研究与设计[D].济南:山东大学,2009.
[2-6] 朱丽.一个光伏阵列模拟器的设计[D].合肥:合肥工业大学,2007.
[2-7] 刘万明.数字式太阳能阵列模拟器的研究[D].成都:电子科技大学,2009.
[2-8] 谢文涛.新型光伏阵列模拟器的研究与设计[D].杭州:浙江大学,2007.
[2-9] 李欣.数字式光伏阵列模拟器的研制[D].杭州:浙江大学,2007.
[2-10] 杜柯.基于DSP的光伏电池数字模拟系统研究[D].武汉:华中科技大学,2006.
[2-11] 陈亚爱.开关变换器控制技术综述[J].电器应用,2008,27(4):4-10.
[3-1] Cho J G,Sabate J A,Zero-voltageZero-current Switching Full-bridge PWM converter for High Power Applications,IEEE
Trans 0n Power Electronics,1996
[3-2] Cho J G,Jeong C Y,Lee FC,Zero-voltage and Zero-current switching Full—bridge PWM Convener Using
Secondary Active Clamp,IEEE Trans 0n Power Electronics,l998
[3-3] Kim E S,Joe K Y,Park S G,An ImprovedSoft Switching PWM FB DC/DC Converter Using the Modified Energy Recovery Snubber,IEEE Applied
Power Electronics Conference and exposition,2000
[3-4] Ruan XB,Yall Y G,An Improved Phaseshifted Zero-voltage Zero-current Switching PWM Converter,IEEE Applied Power
Electronics Conference and exposition,1998
[3-5] Cho J G, Back J W, Jeong C Y, NovelZero-voltage and zero-current-switching(ZVZCS) Full Bridge PWM Converter Using
a Simple Auxiliary Circuit,IEEE Applied Power Electronics Conference and
exposition,l998