本文总览:
半导体产业链之单晶硅片行业深度研究
(温馨提示:文末有下载方式)
近期,硅片尺寸之争再起,硅片龙头隆基股份推出 M6 大硅片产品,并同时发布大硅片组件 Hi-MO4,清楚 表明了力推 M6 的意愿。那么 历史 上硅片尺寸经历过怎样的变化过程?隆基为何要力推 M6?与另一尺寸路线 158.75 方单晶相比,M6 有何优势,二者谁将胜出?M6 之后,是否会有更大尺寸的硅片产品推出?本报告试图 解答这些问题。
光伏硅片尺寸源自半导体,经历了从 125 到 156,从 M0 到 M2 这一不断增大的过程。 光伏硅片尺寸标准源 自半导体硅片,在摊薄成本和提高品质这两大需求的推动下,半导体硅片尺寸不断增大,光伏硅片也随之经历 了从小到大的过程。近年来,光伏硅片尺寸经历了 3 次较大的变革:1)1981 至 2012之间,硅片边距由 100 和 125 大幅度增大为156,成本大幅摊薄;2)2013 至 2017年,硅片规格从 M0(边距 156,直径 200)变革为 M1 (边距 156.75,直径 205)与 M2(边距 156.75,直径 210),组件尺寸不变,硅片尺寸增大,从而摊薄成本;3) 目前正在进行中的变革是硅片规格从 M2 变革为 158.75 方单晶或者M6大硅片,这次变革增厚了产业链各环节 利润空间,并将硅片尺寸推至当前设备允许的极限。
增大硅片尺寸的驱动力是提高溢价、摊薄成本、拓展利润空间,在这些方面上 M6 比 158.75 方单晶更有优 势。 在电站建设中,使用大硅片高功率组件可以减少支架、汇流箱、电缆等成本,从而摊薄单瓦系统成本,为 组件带来溢价;在组件售价端,158.75 方单晶可溢价 2 分钱,M6 可溢价 8 分钱。在制造成本端,大硅片本身可 以摊薄硅片、电池、组件生产环节的非硅成本,从而直接增厚各环节利润;在硅片、电池、组件总成本方面: 158.75 方单晶可降低 2 分钱,M6 可降低 5 分钱。因而,总的来看,158.75 方单晶的超额利润为 4 分钱,M6 超 额利润为 13 分钱,M6 的空间更大。在目前的价格水平下,158.75 方单晶所获超额利润基本留在了硅片环节, 而 M6 大部分超额利润流向了组件环节。推广 M6 硅片的原动力在于增厚产业链各环节利润。在定价方面,我 们认为 M6 定价紧跟 M2 即可始终保持竞争优势,使得各环节的摊薄成本内化为本环节的利润,从而使各环节 毛利率均有提高。
M6已达部分设备允许尺寸的极限,短时间内硅片尺寸标准难以再提高。 增大硅片尺寸的限制在于现有设 备的兼容性。通过梳理拉棒切片、电池、组件三个环节用到的主要生产设备,我们发现现有主流设备可以兼容M6硅片,但这一规格已基本达到现有设备允许的尺寸上限,继续增大硅片尺寸则需重新购置部分设备,使得增 大尺寸带来的成本下降被新购设备带来的成本上升所抵消。因而短时间内硅片尺寸标准难以再提高,M6 将在相 当长的一段时间内成为标准上限。
硅片形状分类:方形和准方形
从形状来看,硅片可以分为方形硅片和准方形硅片两大类。方型硅片并非完全正方,而是在四角处也有小 倒角存在,倒角长度 B一般为 2 mm 左右。准方形硅片四角处为圆倒角,尺寸一般比方型硅片的倒角大很多, 在外观上比较明显。
硅片的关键尺寸:边距
对方形硅片来说,因为倒角长度变化不大,所以描述其尺寸的关键在于边距 A。 对准方形硅片来说,由于其制作过程为圆棒切方然后切片,倒角为自然形成,因而其关键尺寸是边距 A 与直径 D。
尺寸标准:源自半导体硅片
光伏硅片与半导体硅片技术本身极为相似,半导体产业规模化发展早于光伏,因而早期光伏硅片尺寸标准 主要源自半导体硅片行业。
半导体硅片尺寸经历了从小到大的过程。60 年代出现了 0.75 英寸的单晶硅片;1965 年左右开始出现少量 的 1.5 英寸硅片;1975 年左右出现 4 英寸硅片;1980 年左右出现 6 寸片;1990 年左右出现 8 寸片;2000 年左 右出现 12 寸片;预计 2020 年左右 18 寸片将开始投入使用。
半导体硅片尺寸不断增大的根本驱动力有两条:1)摊薄成本;2)提高品质。硅片尺寸越大,在制成的每 块晶圆上就能切出更多芯片,从而明显摊薄了单位成本。同时随着尺寸的增大,边缘片占比将减少,更多芯片 来自于非边缘区,从而产品质量得到提高。
近年来光伏硅片尺寸经历了3 次变革
光伏硅片尺寸标准的权威是 SEMI(国际半导体产业协会)。跟踪其标准发布 历史 ,可以发现近年来光伏硅片尺寸经历了 3 次主要的变革:
1) 由 100 和 125 大幅度增大为 156;此阶段为 1981 至 2012 之间。以 2000 年修改版后的标准 SEMI M6-1000 为例,类原片有 100/125/150 三个尺寸,对应的边距均值分别为 100/125/150 mm,直径分别为 125/150/175 mm,即严格按照半导体硅片尺寸来给定。2012 年,原 SEMI M6 标准被废止,新的 SEMI PV22 标准开始生效,边距 156 被加入到最新标准中;
2) 由 156(M0)小幅调整至 156.75(M2);在标准方面,通过修订,新增的 M2 标准尺寸被纳入 SEMI 标 准范围内,获得了业界的认可;
3)由 156.75(M2)小幅调整至 158.75 或者大幅增大为 166。此次变革尚在进行中。
第一次尺寸变革:125 到 156
2012 年前,光伏硅片尺寸更多地沿用半导体 6 寸片的规格,但由于电池生产设备的进步和产出量提升的需求,125 mm 硅片逐步被市场淘汰了,产品大多集中到156 mm 上。
从面积上来看,从 125 mm 硅片过渡到 156 mm,使硅片面积增大 50%以上,大大提高了单个组件产品功率,提高了资源开发与利用效率。
相比边距,当时直径的规格较多。边距 125 对应直径 164 mm 为主流,边距 156 对应直径 200 为主流(M0)。
第二次尺寸变革:M0 到 M1 再到 M2
第二次尺寸变革主要是指从 M0(边距 156 mm,直径 200 mm)变革为 M1(边距 156.75 mm,直径 205 mm) 与 M2(边距 156.75 mm,直径 210 mm)。这一变革在组件尺寸不变的情况下增大了硅片面积,从而提高了组件 封装效率。硅片面积的提升主要来自两个方面:1)边距增大使硅片面积增大,主要得益于设备精度不断提高, 可以增大硅片边距、减小组件排版时电池间的冗余留白;2)圆角尺寸减小使硅片面积增大,主要得益于拉棒成 本的不断降低,可使用更大直径的硅棒以减小圆角尺寸。
这一变革由中国硅片企业推动,并在 2017 年得到 SEMI 审核通过,成为行业统一的尺寸。2013 年底,隆基、 中环、晶龙、阳光能源、卡姆丹克 5 家企业联合发布 M1 与 M2 硅片标准,在不改变组件尺寸的前提下,M2 通 过提升硅片面积使组件功率提升一档,因而迅速成为行业主流尺寸。
设备无需更改,1 年时间完成切换。此次尺寸改动较小,设备无需做大更改即可生产 M2 硅片,因而切换时 间较短。以隆基为例,在其 2015 年出货产品中,M1 硅片占比 80%,M2 占比仅为 20%;2016 年 M2 占比已达 98%;2017 年已完全不再生产 M0 与 M1 硅片。
第三次尺寸变革:从 M2 到 M6
M2 尺寸标准并未持续很长时间。由于市场对高功率组件的需求高涨,而已建成的电池产线通过提高效率来 提升功率相对较难,相比之下通过增大电池面积来满足更高的组件功率需求成为了部分厂商的应对之策,使得 硅片尺寸出现了 157.0、157.3、157.5、157.75、158.0 等多样化规格,给产业链的组织管理带来极大的不便。
在此情况下,业内再次考虑尺寸标准化问题,并出现了两种标准化方案:1)158.75 全方片。这一方案在不 改变现有主流组件尺寸的情况下将硅片边距增加到极限 158.75 mm,同时使用方形硅片,以减小倒角处的留白, 从而使得硅片面积增加 3%,对应 60 型组件功率提升约 10W;2)166 大硅片(M6)。这一方案是当前主流生产 设备所允许的极限尺寸,统一到这一尺寸后业内企业难以再通过微调尺寸来提升功率,从而使得此方案的持久 性潜力更大。与 M2 硅片相比,其面积增益为 12%,对应 60 型组件功率提升约 40W。
使用大硅片的驱动力有以下两点:
1)在电站建设中,使用大硅片高功率组件可以减少支架、汇流箱、电缆等成本,从而摊薄单瓦系统成本, 为组件带来溢价;
2)在制造端,大硅片本身可以摊薄硅片、电池、组件生产环节的非硅成本,从而直接增厚各环节利润;
组件售价:158.75 可溢价 2 分钱,M6 可溢价 8 分钱
电站的系统成本由组件成本和非组件成本构成,其中非组件成本可以分为两大类:1)与组件个数相关的成 本,主要包括支架、汇流箱、电缆、桩基和支架安装成本等;2)与组件个数无关的成本,主要包括逆变器和变 压器等电气设备、并网接入成本、管理费用等,这部分一般与电站容量相关。在电站容量一定的情况下,组件 个数取决于单个组件功率,因而组件个数相关成本也可叫组件功率相关成本。
对于尺寸、重量相近的光伏组件,在其设计允许范围内,支架、汇流箱、电缆等设备与材料的选型可不做 更改。因而对于单个组串,使用 M2、158.75 全方片和 M6 三种组件的成本相同,由此平摊至单瓦则其组件个数 相关的成本被摊薄,158.75 全方片比 M2 便宜 2 分钱,M6 比 M2 便宜 8 分钱。因此在组件售价端,158.75 全方 片的组件最多可比 M2 的组件溢价 2 分钱,M6 的组件最多可比 M2 的组件溢价 8 分钱。在前期推广阶段,组件 厂可能将此部分溢价让利给下游电站,以推动下游客户偏好转向 M6 硅片。
组件成本:158.75 可摊薄 2 分钱,M6 可摊薄 5 分钱
在总成本方面,158.75 方单晶比 M2 低 2 分钱,M6 比 M2 低 5 分钱。这一成本降低是制造端产业链推广 M6 源动力,也是推广 M6 为产业链增厚的利润空间。拆分到各环节来看: 1)硅片单瓦成本方面,158.75 方单晶硅片比 M2 硅片低 0.1 分钱,M6 硅片比 M2 硅片低 1.6 分钱; 2)电池成本方面,158.75 方单晶比 M2 低 0.3 分钱,M6 比 M2 低 0.9 分钱; 3)组件成本方面,158.75 方单晶比 M2 低 1.5 分钱,M6 比 M2 低 2.3 分钱。
硅片成本测算
硅片成本可拆分为硅成本、非硅成本、三费。其中:
1)硅成本与方棒面积成正比,即 M6 比 M2 贵 12%(0.122 元/片),158.75 比 M2 贵 3%(0.031 元/片);
2)非硅成本中,在拉棒成本方面,圆棒直径变粗使得拉棒速度降低幅度小于圆棒面积增大幅度,最终 M6 比 M2 便宜 6.7%(2.38 元/kg);158.75 方单晶切方剩余率较低,最终使其比 M2 贵 1.5%(0.53 元/kg)。切片成 本大致与方棒面积成正比,最终使得 M6 非硅成本比 M2 贵 7.2%(0.066 元/片),158.75 比 M2 贵 3.8%(0.036 元/片);
3)三费均以0.40元/片计。
综合来看,在单片成本方面,M6 比 M2 贵 8.1%(0.188 元/片),158.75 比 M2 贵2.9%(0.066 元/片);平摊到单瓦成本,M6 比M2便宜 0.016 元/W,158.75 与 M2 基本持平。
非硅成本由拉棒成本和切片成本两部分组成。在单位重量拉棒成本方面,直径越大则单位重量长晶速度越快,因而M6 比 M2 便宜;方单晶切方剩余率低,因而 158.75 方单晶比 M2 贵。
电池成本测算
置成本、非硅成本、三费。其中: 1)硅片购置成本与硅片定价策略有关,这里以 2019-6-20 价格为例,M2/158.75 方单晶/M6 三种硅片含税价格分别为 3.07/3.47/3.47元/片,摊薄到单瓦后,M6 与 M2 相近,158.75 比 M2 贵 0.049 元/W; 2)非硅成本方面,M6 比 M2 降 0.009 元/W,158.75 比 M2 便宜 0.002 元/W; 3)三费均假设为 0.10 元/W。
综合来看,电池环节的附加成本变化不大。
具体来看,在非硅成本中,银浆、铝浆、TMA 等的用量与电池面积相关,最终单瓦成本不变;折旧、人工 等与容量产能相关的成本会被摊薄。
组件成本测算
组件成本可拆分为电池购置成本、非硅成本、三费。其中:
1)电池购置成本与电池定价策略有关,目前 M2/158.75 方单晶两种电池含税价格为 1.20/1.24 元/W,M6 电池尚无公开报价,考虑到目前 M6 与 M2 硅片单瓦定价相同,且电池成本变化不大,因而假设定价与 M2 相同;
2)非硅成本方面,M6 比 M2 便宜 0.024 元/W,158.75 比 M2 便宜 0.015 元/W;
3)三费均假设为 0.20 元/W。
综合来看,电池环节的附加成本降低幅度大于电池环节,但依然变化不大。
具体来看,在非硅成本中,EVA、背板、光伏玻璃等主要组成部分随本来就以面积计价,但 M6 与 158.75 产品提高了面积利用率,成本会有小幅摊薄;同时产线的产能节拍不变,但容量产能增加。从而接线盒、折旧、 人工等成本会被摊薄。
各环节利润分配:158.75 超额利润在硅片,M6 超额利润在电池和组件
158.75 超额利润 4 分钱,M6 超额利润 13 分钱,M6 利润空间比 158.75 方单晶大约高 4 个百分点。在组件 售价端,158.75 可溢价 2 分钱,M6 可溢价 8 分钱;在成本端,158.75 可降低 2 分钱,M6 可降低 5 分钱,因而 158.75 超额利润为 4 分钱,M6 超额利润为 13 分钱。在所有环节均自产的情况下,158.75 可提高净利率 1.7 个 百分点,M6 可提高净利率 5.2 个百分点。
在利润分配方面,在目前的价格水平下,158.75 方单晶所获超额利润基本留在了硅片环节。M6 电池和组件 尚无公开报价,按照假设电池售价 1.20 元/W、组件售价 2.28 元/W 来计算,超额利润在硅片/电池/组件环节的 分配大致为 0.02/0.01/0.10 元/W,大部分超额利润流向了组件环节。
推广 M6 硅片的原动力在于增厚产业链各环节利润。由于目前硅片尺寸的另一选择是158.75,所以推广 M6 需要在产业链各环节利润空间上同时大于 M2 和 158.75 方单晶。
静态情景:M6 组件定价与 M2 相同,让利下游电站,推动渗透率提升
最直接的推广方式是将 M6 组件价格设定为与 M2 相同,从而将电站端的系统成本摊薄让利给下游电站, 快速提升下游电站对 M6 组件的认可度。
目前 M2 组件价格为 2.20 元/W,若 M6 组件价格同样定为 2.20 元/W,则相应的 M6 电池价格需要下调为 1.20 元/W,与 M2 电池价格相同,以保证组件环节 M6 净利率大于 M2;硅片价格可以维持 3.47 元/片不变,此 时电池净利率可保持在 18.3%,依旧高于 M2 电池的净利率 17.8%。在此情境下,M6 各环节净利率均超过 M2, 有利于 M6 推广。
与 158.75 方单晶相比,此时 M6 各环节超额利润为 5 分钱,而 158.75 方单晶超额利润为 4 分钱,M6 更有 优势。具体到各环节来看,M6 硅片环节净利率稍低,但电池和组件环节净利率高,更有利于全产业链共同发展。
动态情景:M6 定价紧跟 M2 即可始终保持竞争优势
在组件价格方面,M6 与 M2 定价保持一致,即可使 M6 组件保持在下游电站选型中的竞争优势。
在电池价格方面,M6 与 M2 定价保持一致,则可使组件环节的成本摊薄沉淀为组件环节的利润,使得对下 游组件厂来说生产 M6 组件时的毛利率始终高于 M2,因而 M6 组件更有吸引力。
在硅片价格方面,保持 M6 与 M2 单位面积的价格相同,则可使电池环节的成本摊薄沉淀为电池环节的利润,使得对电池厂来说生产M6 电池时的毛利率始终高于 M2,因而 M6 电池更有吸引力。
对硅片环节来说,保持 M6 与 M2 单位面积的价格相同则 M6 净利率比 M2 高 4 个点,硅片环节亦有推广动 力。这也为后续继续降价让利给电池、组件、电站留出了更多空间。
增大硅片尺寸的限制在于现有设备的兼容性。通过梳理拉棒切片、电池、组件三个环节用到的主要生产设 备,我们发现现有主流设备可以兼容 M6 硅片,但这一规格已基本达到现有设备允许的尺寸上限,继续增大硅 片尺寸则需重新购置部分设备,使得增大尺寸带来的成本下降被新购设备带来的成本上升所抵消。
拉棒与切片环节:单晶炉等关键设备裕度大,部分设备接近尺寸上限
在拉棒与切片环节,生产工艺主要分为拉棒、切方、切片三步,分别用到了单晶炉、截断机与开方机、切 片机等 4 种设备。总的来看,对于 M6 硅片来说,单晶炉与开方机尺寸尚有较大余量,截断机已接近部分厂家 设备尺寸的上限。
单晶炉:热屏尺寸尚有较大余量。当前主流单晶厂家热屏内径均留有较大余量。M2 硅片外径为 210 mm, 对应的圆棒直径为 214 mm 左右;M6 硅片外径为 223 mm,对应的圆棒直径为 228 mm。当前主流单晶炉热屏内 径在 270 mm 左右,拉制直径 228 mm 硅棒完全可行,且无须重大改造。
截断机:M6 尺寸在目前设备加工规格范围内,但已接近设备加工规格上限。切断机用于将硅棒切成小段, 其加工规格较难调整。以连城数控官网提供的多线切断机主要参数来看,其适用的单晶硅棒直径为 155-230 mm。 而 M6 硅片对应的圆棒直径是 228 mm,在该设备加工规格范围内,已接近设备加工规格上限。
开方机:加工尺寸裕度较大。开方机用于将圆棒切成方棒。以高测股份单棒四线开方机为例,其切割棒料 直径为 200-300 mm,开方尺寸为 157-210 mm。M6 硅片对应的方棒直径为 223 mm,开方尺寸为 166 mm,现有 设备裕度较大。
电池环节:扩散炉内径最关键,目前可满足要求
目前主流 PERC 电池的生产工艺分为清洗制绒、扩散、刻蚀、镀膜、激光刻划、印刷栅线、烧结等工序,涉 及的关键设备有扩散炉、PECVD、激光刻槽机、丝网印刷机、烧结炉等。其中扩散炉、PECVD、烧结炉等管式加 热或真空设备尺寸难以调整,因而是硅片加大尺寸的瓶颈环节。若硅片尺寸超出现有设备极限,则只能购置新 设备,成本较高。目前常见的管式设备内径最小 290 mm。
扩散炉:圆棒直径需小于扩散炉炉管直径。在扩散工序中,一般使用石英舟承载硅片,然后将石英舟放置 于扩散炉炉管中。在扩散炉中,硅片轴线方向一般与扩散炉轴线方向平行,因而硅片尺寸需在扩散炉炉管截面 之内,即硅棒的圆棒直径需小于扩散炉炉管直径,且需要留有一定的操作空间。将硅片边距由 156.75 mm 提高 到 166 mm 的同时,硅片外径将由 210 mm 增大到 223 mm,对于内径 290 mm 的扩散炉来说尚可行。在石英舟 方面,其尺寸经过合理设计一般可以满足M6 硅片进出炉体的要求。
PECVD:硅片边距需小于 PECVD 炉管内径。PECVD 与扩散炉的情况有以下两点不同:1)在 PECVD 中,使 用石墨舟装载硅片;2)硅片轴线与 PECVD 炉管轴线垂直放置,因而只需硅片边距小于 PECVD 炉管内径即可。 为了提高 PECVD 产能,炉管内径一般较大,以叠放更多硅片。将硅片边距由 156.75 mm 提高到 166 mm 对于内 径 450 mm 的 PECVD 来说无障碍。
丝网印刷机:M6 硅片可兼容。丝网印刷机的传输系统、旋转平台、刮刀头、视觉系统均与硅片尺寸相关。
以科隆威为例,其官网挂出的唯一一款全自动视觉印刷机PV-SP910D 可兼容 M6 硅片。
组件环节:排版串焊与层压设备均近极限
组件环节主要分为排版串焊、叠层、层压、装框、装接线盒、固化清洗、测试包装等工序,主要需要用到 排版机、串焊机、层压机等设备。
排版串焊:可兼容,问题不大。排版串焊机的关键尺寸是组件长和宽,若组件尺寸在设备允许范围内,则 只需更改设置即可适用于大硅片组件;若超出设备允许的最大组件尺寸,则很难通过小技改来兼容。以金辰的 高速电池串自动敷设机为例,其适用玻璃组件范围为长 1580-2200 mm、宽 800-1100 mm。预计使用 M6 硅片的 72 型组件长 2120 mm、宽 1052 mm,在排版串焊设备允许范围内。
层压:层压机尺寸已达极限。层压机的层压面积较大,一般一次可以处理多个组件。以金辰 JCCY2336-T 层 压机为例,其层压面积为 2300 mm×3600 mm。在使用 M2 硅片时,该层压机一次可处理 4 块 60 型组件,或 3 块 72 型组件。在使用 M6 硅片时,该层压机同样可以一次处理 4 块 60 型组件或 3 块 72 型组件。对于 60 型组 件来说,处理 M2 硅片组件时,该层压机长度方向的余量为 240 mm,较为宽裕;但处理M6 硅片组件时,由于 单片电池尺寸增大 9.25 mm,60 型组件长度将加长 92.5mm,层压机长度方向的余量仅剩 55 mm,较为紧张。
辅材尺寸易调整。组件辅材主要包括光伏玻璃、EVA、背板、接线盒等。其中光伏玻璃、EVA、背板目前幅 宽可生产 166 及更大尺寸材料,仅需调整切割尺寸即可。接线盒不涉及尺寸问题,仅需考虑组件功率提高后接 线盒内部线缆材料可能需要使用更高等级材料。
……
温馨提示:如需原文档,请登陆未来智库,搜索下载。
单晶硅电池片的生产过程对人身体有多大危害
单晶硅电池片的生产过程大致可分为五个步骤:
a、提纯过程 ;
b、拉棒过程 ;
c、切片过程 ;
d、制电池过程 ;
e、封装过程。
在这些生产过程会用到酸和碱,还有一定的辐射,剧毒的三氯化氧磷等。长期接触磷可使人慢性中毒并可能对人体产生致癌、致畸。伴有肝、肾损害。如血中磷过多会降低血中钙的浓度,引起低血钙症,从而导致神经兴奋性的增强,手足抽搐和惊厥。表现:骨质疏松、易碎、牙齿蛀蚀各种钙质缺乏的症状日益明显、精神崩溃、破坏其它矿物质的平衡。
太阳能光伏发电行业现状如何?
我国光伏行业发展至第四阶段
我国光伏行业于2005年左右受欧洲市场需求拉动起步,十几年来实现了从无到有、从有到强的跨越式大发展,建立了完整的市场环境和配套环境,已经成为我国为数不多、可以同步参与国际竞争并达到国际领先水平的战略性新兴产业,也成为我国产业经济发展的一张崭新名片和推动我国能源变革的重要引擎。目前我国光伏产业在制造规模、产业化技术水平、应用市场拓展、产业体系建设等方面均位居全球前列,已形成了从高纯度硅材料、硅锭/硅棒/硅片、电池片/组件、光伏辅材辅料、光伏生产设备到系统集成和光伏产品应用等完整的产业链,并具备向智能光伏迈进的坚实基础。我国光伏行业发展经历了以下几个历史阶段:
年新增装机量波动较大
据国家能源局统计数据显示,2015年,我国光伏发电新增装机容量为1513万千瓦。2018年,受光伏531新政影响,各地光伏发电新增项目有所下滑,全年新增装机容量出现下降态势,从2017年的5306万千瓦下降至4426万千瓦。2019年,国内光伏新增装机仍然呈现下降趋势,下降至3011万千瓦。2019年对需要国家补贴的项目采取竞争配置方式确定市场规模,因政策出台时间较晚,项目建设时间不足半年,很多项目年底前无法并网,再加上补贴拖欠导致民营企业投资积极性下降等原因,截止2019年底竞价项目实际并网量只有目标规模的三分之一。
2020年,在未建成的2019年竞价项目、特高压项目,加上新增竞价项目、平价项目等拉动下,预计国内新增光伏市场将恢复性增长。“十四五”期间,随着应用市场多样化以及电力市场化交易、“隔墙售电”的开展,新增光伏装机将稳步上升,中国光伏发电新增装机容量为4820万千瓦。
2020年末累计装机量超2.5亿千瓦
累计装机容量方面,据国家能源局统计数据显示,2015年以来,我国光伏发电累计装机容量增长迅速。2015年,全国光伏发电累计装机容量为4318万千瓦,到2020年已经增长至25300万千瓦。从一定程度上说,我国的光伏发电正在迅速发展起来。
光伏发电量增速维持在15%以上
据国家能源局统计数据显示,2013年以来,我国光伏发电量增长迅速。2013年,全国光伏发电量仅为91亿千瓦时,到2019年,全国光伏发电量2238亿千瓦时,同比增长26.08%。截止2020年底,全国光伏发电量为2605亿千瓦时,同比增长16.4%。
华北、西北与华东地区新增装机量较多
截至2021年9月底,全国分布式光伏装机9399万千瓦,占光伏总装机比重33.8%,与上二季度相比提升1.2个百分点,同比提升1.8个百分点
从全国并网光伏发电新增装机布局看,2021年前三季度,我国华北地区新增装机8027.6万千瓦,占全国的28.9%;西北地区新增装机6456.8万千瓦,占全国的23.2%;华东地区新增装机5390.6万千瓦,占全国的19.4%;华中地区新增装机3716.2万千瓦,占全国的13.4%;南方地区新增装机2753.1万千瓦,占全国的9.9%;东北地区新增装机1438.4万千瓦,占全国的5.2%。
总体来说,为了响应巴黎协定,我国提出了“碳中和”“碳达峰”的号召,在此号召下,近年来我国光伏行业有了长足的发展。
—— 以上数据参考前瞻产业研究院《中国光伏发电产业市场前瞻与投资战略规划分析报告》
通威股份研报2021年后
通威股份想必大家都很熟悉,就股市而言,是一个比较活跃的个股,这只股票究竟怎么样呢,如果投资的话值得呢,接下来我来详细讲解一下这只股票。
在讲解通威股份前,我把提前梳理好的关于电气设备行业龙头股名单分享给大家,点一下就可以轻松领取到:宝藏资料:电气设备行业龙头股一览表
一、从公司角度来看
公司介绍:通威股份有限公司主要从事水产畜禽饲料以及高纯晶硅、太阳能电池等产品的研发、生产和销售。公司主要产品就是这三种有水产饲料、有太阳能电池以及高纯晶硅。公司是农业产业化国家重点龙头企业,是因为公司有着优异的产品和全面、高效的服务,公司品牌的名气在行业和市场上也挺大。公司作为著名太阳能电池生产企业,2017年以来,电池出货量已连续4年在全球排名第一。
从简介来看通威股份是一家很有实力的公司,下面我们从较为优秀的地方开始分析,了解一下通威股份各位小伙伴们投资了会不会亏。
亮点一:布局硅片补足短板,"渔光一体"电站规模超 2GW
公司与天合光能合作启动两期共15GW 单晶硅棒及切片项目,大概的投产时间分别是2021年和2022年,来解决公司硅片供应短板。另一方面,截止报告期末公司就早已经建成"渔光一体"光伏电站46座,累计达到超2.4GW的装机并网规模,而且逐步实现布局的规模化。
亮点二:电池片业务技术突破,多路线布局稳固龙头优势
对于公司电池片这个环节来说,我们公司是具有成本优势的,同样的,成为了核心竞争力正是因为公司的严谨管理,2017年起产能利用率基本保持在100%以上,行业优势地位持续屹立着。就PERC技术来看,公司一方面把产品结构更加优化完善,大尺寸产能扩张能力电池板块盈利连续上涨,在另一方面也更深层次地研究多主栅、背钝化、SE 工艺,持续提升产品竞争力;就潜在N型电池技术来看,公司也及时调整布局TOPCON、HJT等多个技术路线,预计到了2021年时完成G W规模HJT中试线运行的目标,使企业在行业中头把交椅的地位得以巩固。
亮点三:多晶硅供需偏紧,低成本产能扩张巩固先发优势
公司硅料环节的核心竞争力是工艺领先带来的成本优势,在生产成本上,1H21新产能已经平均下降到3.37万元/ 吨,在行业中一直拥有领先优势。从长远看,公司低成本产能一直处于扩大趋势,2022年底多晶硅年产能基本上就可以达到33万吨了,同时积极布局N型硅片用料布局,先发优势有望凸显;短期来研究,2021年多晶硅环节新增产能的有效产量贡献存在限制,一旦,供需一直持续偏紧就很有可能会使得硅料价格维持在高位区间上,公司盈利水平可能会更高。
由于篇幅较短,更加详细的通威股份的深度报告和风险提示,学姐总结了在这篇研报里,戳一下链接就能查阅:【深度研报】通威股份点评,建议收藏!
二、从行业角度看
全球光伏正在经历高景气时期,全球能源结构在向新的能够发展,中国最先开始制定"双碳目标",世界各国先后制定了一系列政策,用来促进光伏产业健康发展,增强光伏产业长期发展的稳定性。随着光伏装机量的不断提升,光伏产业链也受到了不小的利益。通威股份在光伏供应链中很明显具有特别大的优势,有望迅速发展于新能源的大潮中。
总结一下,通威股份技术根基深厚,而且竞争上也有优点,长期看来发展前景不错。但是文章具有一定的滞后性,假若各位想清晰知道通威股份未来行情,那就戳一下链接,有专业的投顾可以帮各位诊股,分析通威股份现在行情值不值得买入或卖出:【免费】测一测通威股份还有机会吗?
应答时间:2021-09-07,最新业务变化以文中链接内展示的数据为准,请点击查看
十四五加持,景气度持续,光伏产业链及龙头解读
认真研究,明白讲话,金融科普,有我九方!九方智投拥有一支强大的投研团队——九方金融研究所,为大家分享投资相关的知识和技巧。
摘要:
从双循环、碳减排视角,能源安全、清洁化转型将成为“十四五”规划中的重点内容。2020年9月,中国领导人首次向全世界宣布“中国二氧化碳排放力争于2030年前达到峰值,,努力争取2060年前实现碳中和。”
十四五规划叠加全球碳减排和能源政策加持下,光伏行业的成长道路渐趋清晰;光伏行业实现平价后,估值空间将进一步打开。
本文将对光伏产业链和核心环节龙头的投资价值进行解读。
2019年,我国非化石能源占一次能源消费总量比重为15.3%,以2025年达到20%为核心假设测算,光伏行业未来成长空间测算大致如下:
2021-2025E 光伏 + 风电年发电量的平均增速为 14.9% ;
2021-2025E 光伏累计装机 CAGR 为 18.9% (年均新增装机 67.4GW ),累计装机 将至 581GW 。
当前光伏行业的发展趋势主要是:单晶替代多晶、组件集中度高、双面双玻渗透率提升、逆变器加速出海。光伏制造板块整体业绩表现较好,硅片、组件、光伏玻璃、胶膜、逆变器等环节的头部企业在上半年取得了较高的业绩增速,电池片、背板等环节的业绩表现相对偏弱。
光伏产业链的重点环节包括:硅料、硅片、电池片、组件、逆变器和运营商。
以下我们从2020H1数据来分析各指标排名靠前的环节和公司:
从总市值看,目前市值处于第一梯队(超1000亿)的有2家:隆基股份、通威股份。市值第二梯队(500亿-1000亿)的有5家:信义光能(港股)、中环股份、福莱特、福斯特和晶澳 科技 。
从PE来看,当前估值较低的主要集中在组件和运营商环节,PE不超过30倍(排除负数)的公司有:太阳能、林洋能源、东方日升、晶科能源、晶科 科技 、晶澳 科技 。
从收入规模看,2020H1营收规模超百亿的公司有5家,依次是隆基股份、通威股份、晶科能源、天合光能和晶澳 科技 ,主要集中在硅片和组件环节。
扣非归母净利润规模排名前五的公司是:隆基股份、信义光能、通威股份、晶澳 科技 、晶科能源(美股)。
毛利率较高的环节主要集中在硅片(耗材)、组件环节(玻璃)和运营商,排名靠前的公司有:金博股份、太阳能、美畅股份、帝尔激光、信义光能。
净利率较高的主要有硅片环节(耗材、设备、硅片)和电池片环节、运营商,代表企业有:金博股份、美畅股份、帝尔激光、信义光能、太阳能和隆基股份。
净资产回报率(ROE)排名靠前的公司有:美畅股份、隆基股份、金浪 科技 、中信博、帝尔激光。
从2020H1同比增速来看,营收同比增长最快的是上机数控、京运通、林洋能源、锦浪 科技 、中来股份;归母净利润增长最快的是锦浪 科技 、京运通、天合光能、晶科能源、中信博、隆基股份。
接下来,我们对最具投资价值的光伏产业链重点环节进行分析。
1. 多晶硅:价格明显上涨,有望迎新一轮扩产浪潮
2020上半年,以通威为代表的头部硅料企业毛利率水平呈现明显提升。从四家头部企业横向对比来看,通威2019年产量迅速增长,超过大全新能源,成为当前国内产量最高的多晶硅企业。
7月以来,受新疆新冠疫情以及生产事故等因素影响,多晶硅供需趋紧,价格明显上涨,下半年多晶硅企业的盈利水平有望明显提升。从新增供给看,短期新增供给有限,2020下半年到2021年有望维持供需整体偏紧的状态。
展望未来,多家企业提出了新的扩产计划:通威乐山二期和保山一期项目合计超过8万吨产能预计将于2021年建成投产;大全新能源正在寻求科创板上市,募投项目包括3.5万吨的新建产能;保利协鑫宣称首期5.4万吨颗粒硅项目已正式开工。因此,国内多晶硅产业有望迎来新一轮的扩产浪潮,进口替代以及国内落后产能的替代将持续演绎。
2. 硅片:下半年单晶硅供需趋宽松,盈利环比或将下降
整体看,上半年硅片企业盈利水平同比提升,根据当前的硅片和硅料价格,下半年单晶硅片盈利水平可能环比下降。
传统的单晶硅片巨头2020年产能规模亦大幅扩张,预计隆基、中环、晶科三家2020年底的合计产能规模接近150GW,晶澳亦计划在曲靖经济技术开发区建设20GW单晶拉棒及切片项目;随着参与者的增加以及单晶硅片产能的大幅扩张,预计后续供需渐趋宽松。
3. 组件:龙头集中度显著提升,垂直一体化是大趋势
2020年上半年,组件行业集中度明显提升,在需求端受新冠疫情影响下,行业集中度提升的趋势较为明显,在需求端受新冠影响的背景下,头部的组件企业出货量或销售规模呈现了较明显的增长,晶科、隆基、天合、晶澳和阿特斯等前五大组件企业上半年的组件销量达30.9GW,同比增长约42%,其中隆基的增幅最为明显,上半年出货量跃居全球第二;根据出货量计划,2020年,隆基和晶科出货量有望接近20GW,晶澳有望达到15GW,阿特斯出货计划11-12GW。
从盈利水平看,晶澳 科技 的毛利率水平领先,且近年来逐年提升。 估计隆基的组件一体化毛利率也处于高位;整体看,拥有较为均衡的硅片、电池、组件垂直一体化产能的组件企业在成本端具有一定优势,目前主要的头部组件企业寻求提升电池、硅片自主供应比例。因此,组件环节的竞争门槛可能将提升,头部企业在品牌、规模和垂直一体化产能布局等方面均占优,从而形成品牌优势和成本优势,未来头部企业的市占份额有望持续较快提升。
综上,光伏产业链中景气度较高的环节主要有:
硅料环节 :短期新增供给有限,2020下半年到2021年有望维持供需整体偏紧的状态;后续国内多晶硅产业有望迎来新一轮的扩产浪潮,进口替代以及国内落后产能的替代将持续演绎。龙头企业: 通威股份 。
硅片环节 :随着参与者的增加以及单晶硅片产能的大幅扩张,主要设备企业受益;后续单晶硅片供需渐趋宽松,隆基的竞争优势依然明显;随着光伏装机规模的增加,主要耗材金刚线和碳基复合材料的需求都有望持续增长,且竞争格局较好。龙头企业: 隆基股份、晶盛机电、美畅股份 。
组件环节 :组件竞争门槛可能提高,头部企业有望形成品牌和成本优势,未来头部企业的市占份额有望持续较快提升。光伏玻璃和胶膜竞争格局较好,未来受益于光伏需求稳定增长,且玻璃环节受益于双面双玻组件渗透率的提升。龙头企业: 隆基股份、晶澳 科技 、福莱特、福斯特 。
参考资料:
20201011-光大证券-光大证券光伏行业系列专题报告二:从双循环视角看“十四五”的光伏产业
20200930-平安证券-平安证券电力设备行业动态跟踪报告:光伏产业链格局梳理,把握细分景气环节
本报告由九方智投投资顾问欧阳健(登记编号: A0740619070001)撰写,本文所涉个股仅为案例分析,不作为投资建议,据此操作风险自担。