大家好!今天让小编来大家介绍下关于mpvt型光伏并网逆变器_并网逆变器的光伏发电并网逆变器的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.光伏发电系统由哪些部分构成?其作用分别是什么2.并网逆变器的光伏发电并网逆变器
3.哪位电气高手分别帮我解释下离网逆变器和并网逆变器 和他们的区别
光伏发电系统由哪些部分构成?其作用分别是什么
离网型光伏发电系统组成:
典型的光伏发电系统主要由光伏阵列、充放电控制器、储能装备或逆变器、负载等组成。其构成如图所示。
光照射到光伏阵列上,光能转变成电能,光伏阵列的输出电流由于受环境影响,因此是不稳定的,需要经过DC-DC转换器将其转变成稳定的电流后,才能加载到蓄电池上,对蓄电池充电,蓄电池再对负载供电。如果是并网售电,则不需要蓄电池,而是通过并网逆变器,将直流电流转换成交流电流,并到电网上进行出售。也就是说,离网型光伏发电系统必须使用到蓄电池储能,而并网型则不一定需要。
控制系统对光伏阵列的输出电压和电流进行实时采样,判断光伏发电系统是否工作在最大功率点上,然后根据跟踪算法,改变PWM信号的占空比,进而控制光伏阵列的输出电压使其工作点向最大功率点逼近。在蓄电池过充过放控制模块中,当蓄电池电压充电或放电到一定的设定值后,就会自动关闭或打开。
光伏阵列组件
光伏发电系统利用以光电效应原理制成的光伏阵列组件将太阳能直接转换为电能。光伏电池单体是用于光电转换的最小单元,一个单体产生的电压大约为0.45V,工作电流约为20~25mA/cm2,将光伏电池单体进行串、并联封装后,就成了光伏电池阵列组件。
当受到光线照射的太阳能电池接上负载时,光生电流流经负载,并在负载两端建立起端电压,这时太阳能电池的工作情况可以用下图所示的太阳能电池负载特性曲线来表示。它表明在确定的日照强度和温度下,光伏电池的输出电压和输出电流以及输出功率之间的关系,简称I-V特性和P-V特性。从图中可以看出,光伏发电系统的特性曲线具有强烈的非线性,既非恒压源也非恒流源。从其P-V特性曲线可以看出,在日照强度一定的前提下,其输出功率近似于一个开口向下的抛物线。该抛物线顶点对应的功率即为该日照强度下的P-V曲线的最大功率点,对应的电压称为最大功率点电压。为了提高光伏发电系统的转化效率,就必须使系统保持运行在P-V曲线最大功率点附近。
光伏电池阵列的几个重要技术参数:
1)短路电流(Isc):在给定日照强度和温度下的最大输出电流。
2)开路电压(Voc):在给定日照强度和温度下的最大输出电压。
3)最大功率点电流(Im):在给定日照强度和温度下相应于最大功率点的电流。
4)最大功率点电压(Um):在给定日照和温度下相应于最大功率点的电压。
5)最大功率点功率(Pm):在给定日照和温度下太阳能电池阵列可能输出的最大功率。
DC-DC转换器
光伏电池板发出的电能是随着天气、温度、负载等变化而不断变化的直流电能,其发出的电能的质量和性能很差,很难直接供给负载使用。需要使用电力电子器件构成的转换器,也就是DC-DC转换器,将该电能进行适当的控制和变换,变成适合负载使用的电能供给负载或者电网。电力电子转换器的基本作用是把一个固定的电能转换成另一种形式的电能进行输出,从而满足不同负载的要求。它是光伏发电系统的关键组成成分,一般具备有几种功能:最大功率点追踪、蓄电池充电、PID自动控制、直流电的升压或降压以及逆变。
DC-DC转换器输出电压和输入电压的关系通过控制开关的通断时间来实现的,这个控制信号可以由PWM信号来完成。主要工作原理是保持通断周期(T)不变,调节开关的导通持续时间来控制电压。D为PWM信号的占空比。
根据输入和输出的不同形式,可将电力电子转换器分为四类,即AC-DC转换器、DC-AC转换器、DC-DC转换器和AC-AC转换器。在离网型光伏发电系统中采用的是DC-DC转换器。
DC-DC转换器,其工作原理是通过调节控制开关,将一种持续的直流电压转换成另一种(固定或可调)的直流电压,其中二极管起续流的作用,LC电路用来滤波。DC-DC转换电路可以分为很多种,从工作方式的角度来看,可以分为:升压式、降压式、升降压式和库克式等。
降压式转换器(BuckConverter)是一种输出电压等于或小于输入电压的单管非隔离直流转换器;升降压式变换器(Buck-BoostConverter)转换电路的主要架构由PWM控制器与一个变压器或两个独立电感组合而成,可产生稳定的输出电压。当输入电压高于目标电压时,转换电路进行降压;当输入电压下降至低于目标电压时,系统可以调整工作周期,使转换电路进行升压动作;而升压式转换器(BoostConverter)是输出电压高于输入电压的单管不隔离直流转换器,所用的电力电子器件及元件和Buck转换器相同,两者的区别仅仅是电路拓扑结构不同。
蓄电池
在独立运行的光伏发电系统中,储能装置是必不可少的。现在可选的储能方法有很多,如电容器储能、飞轮储能、超导储能等,但是从方便、可靠、价格等综合因素来考虑,大多数大中型的光伏发电系统都使用了免维护式的铅酸蓄电池作为系统的储能装置。
但选用铅酸蓄电池也有不足之处,它比较昂贵,初期投资能够占到整个发电系统的1/4到1/2,而蓄电池又是整个系统中较薄弱的环节,因此如果管理不当,会使蓄电池提前失效,增加整个系统的运营成本。
光伏控制模块
光伏控制模块以单片机为控制中心,为蓄电池提供最佳的充电电流和电压,快速、平稳、高效地为蓄电池充电。并在它充电过程中减少蓄电池的损耗,尽量延长蓄电池的使用寿命,同时保护蓄电池免受过充电和过放电的危害。如果用户使用的是直流负载,通过太阳能控制器可以为负载提供稳定的直流电(由于受天气等外界因素的影响,太阳电池阵列发出的直流电的电压和电流不是很稳定),同时也通过控制传感器电路(光控、声控等)来实现全自动开关灯功能。
单片机的主要工作是将电流采集电路和电压采集电路采集到的电流、电压进行运算比较,然后通过MPPT算法来调节PWM的占空比D,使光伏阵列组件工作在最大功率点处。
离网型逆变器
住宅用的离网型光伏发电系统因为部分负载是交流负载,因此还需要离网型逆变器,把光伏组件发出的直流电变成交流电给交流负载使用。光伏离网型逆变器与光伏并网型逆变器在主电路结构上没有较大区别,主要区别在光伏并网型逆变器需要考虑并网后与电网的运行安全。也就是同频;同相;抗孤岛等控制特殊情况的能力。而光伏离网型逆变器就不需要考虑这些因数。
为了提高离网型光伏发电系统的整体性能,保证电站的长期稳定运行,逆变器的性能指标非常重要。
离网型光伏发电系统的应用:
离网型光伏发电系统广泛应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。
并网逆变器的光伏发电并网逆变器
盛弘电气总部设立在全球电力电子的研发及制造中心城市深圳,在北京、上海、西安、沈阳、武汉、成都设立了办事处。深圳市盛弘电气股份有限公司是一家专注于电力技术应用的高科技公司,公司战略方向是为新能源和智能电网提供领先的电力电子产品和解决方案。
盛弘电气的产品包括有源滤器,光伏并网逆变器,新能源汽车非车载充电机,定制电源。大型光伏系统并网电气系统解决方案。盛弘电气是深圳市政府认定批准的软件企业,有源滤波器及光伏并网逆变器产品均注册国家软件著作权,认定为软件产品。盛弘电气是深圳市及南山区关注的高科技企业,多次取得政府科研资金扶植发展,产品入选国家创新基金,深圳市科技研发开发计划。
主要产品有电能质量产品、有源滤波器、精密无功发生器、光伏逆变器、储能变流器、电动汽车充电器及电池成型和测试设备。模块化大功率电源产品技术是盛宏电力电子技术的最大优势。反馈式铅酸蓄电池脉冲充放电电源、反馈式锂电池组检测设备、反馈式四通道电池组检测设备、反馈式电池组形成及分容设备。
逆变器采用独特的智能休眠技术和模块化设计,根据日照强度、日出日落的变化自动开启或关闭逆变器模块,从而降低逆变器的功率损耗,延长逆变器的使用寿命。随着新能源汽车产业的不断发展,动力电池、电动汽车充电桩等行业已站在快速发展的出口。未来十年,预计将形成万亿元的充电桩基础设施建设市场。在政策红利和市场需求的推动下,新能源汽车基础设施建设持续升温,整个行业发展空间巨大,市场前景看好。
哪位电气高手分别帮我解释下离网逆变器和并网逆变器 和他们的区别
由于建筑的多样性,势必导致太阳能电池板安装的多样性,为了使太阳能的转换效率最高同时又兼顾建筑的外形美观,这就要求我们的逆变器的多样化,来实现最佳方式的太阳能转换。现在世界上比较通行的太阳能逆变方式为:集中逆变器、组串逆变器,多组串逆变器和组件逆变,现将几种逆变器运用的场合加以分析。
集中逆变器一般用与大型光伏发电站(>10kW)的系统中,很多并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流。最大特点是系统的功率高,成本低。但受光伏组串的匹配和部分遮影的影响,导致整个光伏系统的效率和电产能。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制,以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高的效率。
在SolarMax(索瑞·麦克)集中逆变器上,可以附加一个光伏阵列的接口箱,对每一串的光伏帆板串进行监控,如其中有一组串工作不正常,系统将会把这一信息传到远程控制器上,同时可以通过远程控制将这一串停止工作,从而不会因为一串光伏串的故障而降低和影响整个光伏系统的工作和能量产出。 多组串逆变是取了集中逆变和组串逆变的优点,避免了其缺点,可应用于几千瓦的光伏发电站。在多组串逆变器中,包含了不同的单独的功率峰值跟踪和直流到直流的转换器,这些直流通过一个普通的直流到交流的逆变器转换成交流电,并网到电网上。光伏组串的不同额定值(如:不同的额定功率、每组串不同的组件数、组件的不同的生产厂家等等)、不同的尺寸或不同技术的光伏组件、不同方向的组串(如:东、南和西)、不同的倾角或遮影,都可以被连在一个共同的逆变器上,同时每一组串都工作在它们各自的最大功率峰值上。
同时,直流电缆的长度减少、将组串间的遮影影响和由于组串间的差异而引起的损失减到最小。 组件逆变器是将每个光伏组件与一个逆变器相连,同时每个组件有一个单独的最大功率峰值跟踪,这样组件与逆变器的配合更好。通常用于50W到400W的光伏发电站,总效率低于组串逆变器。由于是在交流处并联,这就增加了交流侧的连线的复杂性,维护困难。另一需要解决的是怎样更有效的与电网并网,简单的办法是直接通过普通的交流电插座进行并网,这样就可以减少成本和设备的安装,但往往各地的电网的安全标准也许不允许这样做,电力公司有可能反对发电装置直接和普通家庭用户的普通插座相连。另一和安全有关的因素是是否需要使用隔离变压器(高频或低频),或者允许使用无变压器式的逆变器。这一逆变器在玻璃幕太阳能并网逆变器 光伏并网逆变器墙中使用最为广泛。
交流光伏发电系统中,由于种种技术或是政策原因,存在并网到国家统一电网中的逆电器,也存在没有并网到国家统一电网中的逆电器,按照是否并网划分为:光伏离网型逆变器和光伏并网型逆变器。
两者的区别如下:
1、作用机制不同
光伏离网型逆变器为功率变换装置,将输入的直流电推挽升压,再经过逆变桥SPWM正弦脉宽调制技术逆变成220V交流电;光伏并网逆变器是一种特殊的逆变器,除了可以将直流电转换成交流电外,其输出的交流电可以与市电的频率及相位同步,因此输出的交流电可以回到市电。
2、保护机制不同
光伏离网型逆变器具有输入反接保护,输入欠压保护,输入过压保护,输出过压保护,输出过载保护,输出短路保护,过热保护等多种保护功能;光伏并网型逆变器有国际防护等级认证,主要是针对产品有关固体异物以及水的防护能力。
3、技术不同
光伏离网型逆变器使用SPWM法,冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同;光伏并网逆变器架构有使用较新的高频变压器、传统的工频变压器,或是无变压器的逆变器架构。
扩展资料:
典型的运作方式:
逆变器会将直流电源转换为交流电源,以便送回电网。并网逆变器的输出电压的频率需和电网频率相同,一般会用机器中的振荡器达成,并且也会限制输出电压不超过电网电压。
现代高品质的并网逆变器,其输出的功率因素可以为1,表示其输出的电压及电流相位是相同旳,和电网电压之间的相位差在1度以内。逆变器中有微处理器可以感测电网的交流波形,并且依此波形来产生电压送回电网。
不过送回电网的电需有一定比例的无功功率,使附近电网的电力在允许的限制范围内,否则,若某一区域电网的再生能源比例较高,在高电能产出的时候其电压可能会上升的太高。
若电网的电力断电时,并网逆变器需要快速的和电网离线。这是美国国家电气规范的规定,以确保在电网断电时,并网逆变器也不会提供电力给电网,此时维修电网的工人才不会因此而触电。
若适当的配置,并网逆变器可以让一个家庭可以使用其自行发电的替代能源,而不需要繁杂的配线,也不需要电池。若是替代能源不足,不足的部分仍然会用电网的电来提供。
百度百科-并网逆变器
百度百科-光伏离网逆变器