本文总览:
- 1、2022年京津冀地区有没有太阳能光伏相关的展会活动?
- 2、2011有哪些光伏展?
- 3、目前,利用太阳能的关键技术在于?(急需)
- 4、太阳能的利用
- 5、太阳能未来的发展趋势?
- 6、世界各国对太阳能利用的现状、取得的成就
2022年京津冀地区有没有太阳能光伏相关的展会活动?
2022年9月28日至30日在河北省石家庄市正定新区石家庄国际会展中心举办第二届河北光伏、储能、风电暨华北智慧能源博览会。本届展会预计展出面积达24000平方米;参展商约500家;专业观众约26000人次。
2011有哪些光伏展?
第八届全国太阳能东北展(沈阳) 中国 沈阳 2011-03-28 2011-03-30
2011年SolarTech太阳能领袖峰会 美国 加利福尼亚州 圣克拉拉 2011-03-29 2011-03-30
2011年世界清洁能源大会 非洲部分 南非 约翰内斯堡 2011-03-29 2011-03-31
公用事业光伏会议 意大利 米兰 2011-03-29 2011-03-30
第五届中国新能源国际高峰论坛 中国 北京 2011-03-30 2011-03-31
2011非洲太阳能展 南非 约翰内斯堡 2011-03-30 2011-03-31
2011年EVER Monaco展览会暨论坛 摩纳哥 2011-03-31 2011-04-03
第三届亚洲光伏峰会 中国 北京 2011-03-31 2011-04-01
美国光伏会议及展会 美国 宾夕法尼亚州 费城 2011-04-03 2011-04-05
国际聚光光伏系统大会 美国 内华达州 拉斯维加斯 2011-04-04 2011-04-06
欧洲光电产业联盟大会暨展览会 德国 柏林 2011-04-04 2011-04-06
2011欧洲电子印刷及光伏峰会 德国 杜塞尔多夫 2011-04-05 2011-04-06
2011国际太阳能专门展览会 韩国 大邱 2011-04-06 2011-04-08
2011年Energethica托里诺贸易展 意大利 托里诺 2011-04-07 2011-04-09
清洁能源峰会 印度 新德里 2011-04-07 2011-04-08
中国(深圳)国际电池展览会 中国 深圳 2011-04-08 2011-04-10
2011年北京国际光伏四新展览会 中国 北京 2011-04-08 2011-04-10
PHOTON 2011欧洲太阳能太瓦时大会系列 德国 柏林 2011-04-12 2011-04-14
2011年光伏组件用聚合材料及生产技术国际大会 德国 科隆 2011-04-12 2011-04-14
2011中国国际太阳能产业大会暨展览会 中国 南京 2011-04-12 2011-04-14
第三届中国国际光伏产业发展高层论坛 中国 南京 2011-04-12 2011-04-13
2011年印度尼西亚能源可持续性、绿色资源与环保科技国际会议及博览会 印度尼西亚 雅加达 2011-04-13 2011-04-16
第七届东南欧地区国际能效及可再生能源大会暨展览会 保加利亚 索菲亚 2011-04-13 2011-04-15
2011年太阳能与玻璃交融峰会 德国 柏林 2011-04-13 2011-04-13
2011年EnergyMed展览会 意大利 那不勒斯 2011-04-14 2011-04-16
2011年薄膜工业论坛 德国 柏林 2011-04-15 2011-04-15
第一届国际硅太阳电池会议 德国 弗赖堡 2011-04-17 2011-04-20
2011年印度光伏太阳能展会 印度 孟买 2011-04-19 2011-04-21
2011年世界可再生能源大会暨展览会 印度 新德里 2011-04-21 2011-04-23
第四届非洲可再生能源及环境国际展览会 塞内加尔 达喀尔 2011-04-27 2011-04-30
2011天津国际太阳能及光伏工程展览会 中国 天津 2011-04-28 2011-04-30
第十二届可再生能源及分布式发电会议暨展览会 意大利 维罗那 2011-05-04 2011-05-06
第三届南非与中东太阳能会议暨展会 摩洛哥 2011-05-04 2011-05-05
2011中国国际智能电网设备与技术展览会 中国 上海 2011-05-05 2011-05-07
2011亚洲太阳能光伏工业展览会 中国 上海 2011-05-05 2011-05-07
2011年印度可再生能源展览会暨大会 印度 新德里 2011-05-05 2011-05-07
第五届中欧可再生能源展会暨大会 匈牙利 布达佩斯 2011-05-05 2011-05-07
2011国际可再生能源大会(瑞典) 瑞典 林雪平 2011-05-08 2011-05-13
2011空气源热泵及配套产品展览会(广州) 中国 广州 2011-05-10 2011-05-12
2011年Genera贸易展 西班牙 马德里 2011-05-11 2011-05-13
2011印度尼西亚光伏展会 印度尼西亚 雅加达 2011-05-12 2011-05-14
2011年混合能源及有机光伏大会 西班牙 巴伦西亚 2011-05-15 2011-05-18
美国太阳能协会2011年全美太阳能大会 美国 北卡罗来纳州 罗利 2011-05-17 2011-05-21
2011中国国际新能源材料展览会 中国 北京 2011-05-18 2011-05-20
BIPV 2011上海太阳能建筑一体化产品展览会 中国 上海 2011-05-21 2011-05-23
第二届国际可再生能源和替代燃料展会暨会议 俄国 莫斯科 2011-05-24 2011-05-26
2011年Greenpower国际可再生能源展 波兰 波兹南 2011-05-24 2011-05-26
2011年中国新能源之十一五盘点十二五解读 中国 北京 2011-05-28 2011-05-29
2011俄罗斯Semicon展览会 俄罗斯 莫斯科 2011-05-31 2011-06-02
2011亚洲可再生能源展 泰国 曼谷 2011-06-01 2011-06-04
第二届小型光伏应用研讨会 德国 乌尔姆 2011-06-06 2011-06-07
2011年Intersolar展览会 德国 慕尼黑 2011-06-08 2011-06-10
第三十三届国际环保科技及绿色能源展览会 韩国 首尔 2011-06-08 2011-06-10
2011年台湾光电展暨研讨会 台北 2011-06-14 2011-06-16
第17届ICCI大会暨贸易展 土耳其 伊斯坦布尔 2011-06-15 2011-06-17
2011斯里兰卡光伏展 斯里兰卡 科伦坡 2011-06-16 2011-06-18
2011年工业能源与环境大会暨展览会 泰国 曼谷 2011-06-23 2011-06-26
第二届英国未来太阳能光伏大会 英国 伦敦 2011-06-29 2011-06-29
2011尼日利亚替代能源博览会 尼日利亚 阿布亚 2011-07-06 2011-07-08
2011(北美)Intersolar展览会 美国 加利福尼亚州 旧金山 2011-07-12 2011-07-14
2011年印尼可再生能源展会暨会议 印度尼西亚 雅加达 2011-07-14 2011-07-16
2011中国内蒙古太阳能光伏产业博览会 中国 呼和浩特 2011-07-15 2011-07-17
第五届青岛国际建筑节能博览会 中国 青岛 2011-07-21 2011-07-24
2011日本太阳能光电展 日本 幕张 2011-07-27 2011-07-29
第五届印度可再生能源展 印度 新德里 2011-08-10 2011-08-12
2011第三届广州国际太阳能光伏展 中国 广州 2011-08-11 2011-08-13
2011年ISES世界太阳能大会 德国 卡塞尔 2011-08-28 2011-09-02
2011中国(成都)太阳能国际峰会暨展览会 中国 成都 2011-09-03 2011-09-05
第26届欧洲光伏太阳能大会暨展览会 德国 汉堡 2011-09-05 2011-09-09
土库曼斯坦国际电力展览会暨科技大会 土库曼斯坦 阿什哈巴德 2011-09-08 2011-09-10
2011年第二届苏州国际光伏大会暨展览会 中国 苏州 2011-09-10 2011-09-12
第五届地中海地区国际光伏技术交易会 意大利 罗马 2011-09-14 2011-09-16
北京太阳能展 中国 北京 2011-09-19 2011-09-21
2011年海湾地区太阳能展览会 阿联酋 阿布扎比 2011-09-20 2011-09-22
2011年可再生能源技术会议暨展览 美国 华盛顿特区 2011-09-20 2011-09-22
2011光伏塑胶会议 美国 宾西法尼亚州 费城 2011-09-20 2011-09-21
2011年印尼可再生能源展览会 印度尼西亚 雅加达 2011-09-21 2011-09-24
能源技术会议暨展览会 以色列 特拉维夫市 2011-09-21 2011-09-22
中国(成都)新能源国际峰会暨太阳能展览会 中国 成都 2011-09-27 2011-09-29
2011年欧洲世界未来能源论坛暨展览会 瑞士 日内瓦 2011-10-04 2011-10-06
第七届欧洲绿色能源市场峰会 瑞士 苏黎世 2011-10-06 2011-10-07
2011年SolarMed大会暨展览会 法国 巴黎 2011-10-10 2011-10-11
2011年中国国际节能及新能源博览会 中国 廊坊 2011-10-18 2011-10-20
2011国际太阳能光伏会议 美国 德克萨斯州 达拉斯 2011-10-18 2011-10-20
2011年RENEX展会 土耳其 伊斯坦布尔 2011-10-20 2011-10-23
第二届美国聚光太阳能会议暨展览会 美国 丹佛 2011-10-25 2011-10-26
2011印度国际太阳能光伏展 印度 海德拉巴 2011-11-09 2011-11-11
2011年Productronica展览会 德国 慕尼黑 2011-11-15 2011-11-18
上海国际太阳能光伏博览会暨光伏产业论坛 中国 上海 2011-11-16 2011-11-18
第12届Solarpraxis论坛 德国 柏林 2011-11-17 2011-11-18
2011上海国际太阳能光伏大会暨展览会 中国 上海 2011-11-30 2011-12-02
第七届德雷斯中国国际太阳能光伏(深圳)展览会 中国 深圳 2011-12-03 2011-12-05
国际可再生能源展览会 法国 蒙彼利埃 2011-12-07 2011-12-10
2011印度Intersolar展会暨会议 印度 孟买 2011-12-14 2011-12-16
第5届世界未来能源峰会 阿联酋 阿布扎比 2012-01-16 2012-01-19
目前,利用太阳能的关键技术在于?(急需)
不怕我讲很多吧~~
世界太阳能开发利用现状及我国太阳能产业发展的思考
高 峰
�(中国科学院资源环境科学信息中心 兰州 730000)
摘要:太阳能以其储量的“无限性”、存在的普遍性、开发利用 的清洁性以及逐渐显露出的经济性等优势,其开发利用是最终解决常规能源特别是化石能源 带来的能源短缺、环境污染和温室效应等问题的有效途径,是人类理想的替代能源。当前, 太阳能开发利用技术及其推广应用突飞猛进,1997年,全球太阳能电池的销售量增加了40% ,成为全球发展最快的能源。太阳能热水器已形成行业,正以其优良的性能价格比不断地 冲击燃气、电热水器市场;太阳能热电站也已商业化,是大型太阳能电站的希望所在;光电 技术发展更快,表现在光电转换效率的不断提高和光电池制造成本的不断下降以及各种新型 太阳能电池的问世。各国对太阳能的开发利用给予了极大关注,突出表现在各国政府推出的 光伏计划,如德国的“千顶计划”,日本的“朝日七年计划”以及美国的“百万屋顶计划” 等。以色列在其房屋太阳能热水器安装率达80%的情况下,更是明文规定,凡新建房屋必须 配置太阳能热水器。我国太阳能开发利用有其成功之处,但也存在诸多问题和不足。在综合 分析我国太阳能开发利用现状的基础上,对进一步发展我国太阳能产业进行了如下思考:① 重视太阳能 开发利用,迎接太阳能经济时代;②加大投资力度,实施强化的光电发展战略;③加大政策 优惠程度,扶植太阳能热水器行业;④发挥资源优势,转化产业优势。
在跨入21世纪之际,人类将面临实现经济和社会可持续发展的重大挑战,在有限资源和环保 严格要求的双重制约下发展经济已成为全球热点问题。而能源问题将更为突出,不仅表现在 常规能源的匮乏不足,更重要的是化石能源的开发利用带来了一系列问题,如环境污染,温 室效应都与化石燃料的燃烧有关。目前的环境问题,很大程度上是由于能源特别是化石能源 的开发利用造成的。因此,人类要解决上述能源问题,实现可持续发展,只能依靠科技进步 ,大规模地开发利用可再生洁净能源。太阳能以其独具的优势,其开发利用必将在21世纪得 到长足的发展,并终将在世界能源结构转移中担纲重任,成为21世纪后期的主导能源。�
1 太阳能与化石能源的简要比较
1.1 化石能源带来的问题
(1)能源短缺
由于常规能源的有限性和分布的不均匀性,造成了世界上大部分国家能源供应不足,不能满 足其经济发展的需要。从长远来看,全球已探明的石油储量只能用到2020年,天然气也只能 延续到2040年左右,即使储量丰富的煤炭资源也只能维持二三百年〔1〕。因此,如不尽早设法解决化石能源的替代能源,人类迟早将面临化石燃料枯竭的危机局面。
(2)环境污染
当前,由于燃烧煤、石油等化石燃料,每年有数十万吨硫等有害物质抛向天空,使大气环境遭到严重污染,直接影响居民的身体健康和生活质量;局部地区形成酸雨,严重污染水土。 这些问题最终将迫使人们改变能源结构,依靠利用太阳能等可再生洁净能源来解决。
(3)温室效应
化石能源的利用不仅造成环境污染,同时由于排放大量的温室气体而产生温室效应,引起全 球气候变化。这一问题已提到全球的议事日程,其影响甚至已超过了对环境的污染,有关国 际组织已召开多次会议,限制各国CO2等温室气体的排放量。
1.2 阳能资源及其开发利用特点
(1)储量的“无限性”
太阳能是取之不尽的可再生能源,可利用量巨大。太阳每秒钟放射的能量大约是1.6×1023kW,其中到达地球的能量高达8×1013kW,相当于6×109t标准煤。按此计算,一年内到达地球表面的太阳能总量折合标准煤共约1.892×1013千亿t,是目前世界主要能源探明储量的一万倍〔2〕。太阳的寿命至少尚有40亿年,相对于人类历史来说,太阳可源源不断供给地球的时间可以说是无限的。相对于常规能源的有限性,太阳能具有储量的“无限性”,取之不尽,用之不竭。这就决定了开发利用太阳能将是人类解决常规能源匮乏、枯竭的最有效途径。�
(2)存在的普遍性
虽然由于纬度的不同、气候条件的差异造成了太阳能辐射的不均匀,但相对于其他能源来说,太阳能对于地球上绝大多数地区具有存在的普遍性,可就地取用。这就为常规能源缺乏的国家和地区解决能源问题提供了美好前景。�
(3)利用的清洁性
太阳能像风能、潮汐能等洁净能源一样,其开发利用时几乎不产生任何污染,加之其储量的无限性,是人类理想的替代能源。
(4)利用的经济性
可以从两个方面看太阳能利用的经济性。一是太阳能取之不尽,用之不竭,而且在接收太阳能时不征收任何“税”,可以随地取用;二是在目前的技术发展水平下,有些太阳能利用已具经济性,如太阳能热水器一次投入较高,但其使用过程不耗能,而电热水器和燃气热水器在使用时仍需耗费,有关研究结果表明〔3〕,太阳能热水器已具很强的竞争力。随着科技的发展以及人类开发利用太阳能的技术突破,太阳能利用的经济性将会更明显。
1.3 21世纪后期太阳能将占主导地位
世界各国,尤其发达国家对21世纪的能源问题都特别关注。由于化石能源储量的有限性和利用的污染性,各国专家都看好太阳能等可再生能源,尽管目前太阳能的利用仅在世界能源消 费中占很小的一部分。如果说20世纪是石油世纪的话,那么21世纪则是可再生能源的世纪, 太阳能的世纪。据权威专家估计〔4〕,如果实施强化可再生能源的发展战略,到下世纪中叶,可再生能源可占世界电力市场的3/5,燃料市场的2/5。在世界能源结构转换中, 太阳能处于突出位置。美国的马奇蒂博士对世界一次能源替代趋势的研究结果(如图1所示) 表明,太阳能将在21世纪初进入一个快速发展阶段,并在2050年左右达到30%的比例,次于核能居第二位,21世纪末太阳能将取代核能居第一位〔5〕。壳牌石油公司经过长期 研究得出结论,下一世纪的主要能源是太阳能;日本经济企划厅和三洋公司合作研究后则更 乐观地估计,到2030年,世界电力生产的一半将依靠太阳能〔2〕。正如世界观察研 究所的一期报告所指出:正在兴起的“太阳经济”将成为未来全球能源的主流。其最新一期 报告则指出,1997年全球太阳电池的销售量增长了40%,已成为全球发展最快的能源①①。
2太阳能开发利用技术及其产业化的现状与发展趋势�
人类利用太阳能已有几千年的历史,但发展一直很缓慢,现代意义上的开发利用只是近半个 世纪的事情。1954年美国贝尔实验室研制出世界上第一块太阳电池,从此揭开了太阳能开发 利用的新篇章。之后,太阳能开发利用技术发展很快,特别是70年代爆发的世界性的石油危 机有力地促进了太阳能开发利用。经过近半个世纪的努力,太阳能光热利用技术及其产业异 军突起,成为能源工业的一支生力军。迄今为止,太阳能的应用领域非常广泛,但最终可归 结为太阳能热利用和光利用两个方面。太阳能利用的具体形式和用途如图2所示〔2〕。�
图2太阳能利用系统
2.1太阳能热利用及其产业发展�
根据可持续发展战略,太阳能热利用在替代高含碳燃料的能源生产和终端利用中大有用武之 地。从图2可以看出,太阳能热利用具有广阔的应用领域,可归纳为太阳能热发电(能源产出 )和建筑用能(终端直接用能),包括采暖、空调和热水。当前太阳能热利用最活跃、并已形 成产业的当属太阳能热水器和太阳能热发电。�
2.1.1 太阳能热水器�
在世界范围内,太阳能热水器技术已很成熟,并已形成行业,正在以优良的性能不断地冲击 电热水器市场和燃气热水器市场。国外的太阳能热水器发展很早,但80年代的石油降价,加 之取消对新能源减免税优惠的政策导向,使工业发达国家太阳能热水器总销售量徘徊在几十万平方米。据报道,1992年国外太阳能热水器总量为45万m2,其中日本为20万m2,美国 为12万m2,欧洲为8万m2,其他国家为5万m2。世界环境发展大会之后,许多国家又开 始重视太阳能热水器在节约常规能源和减少排放CO2方面的潜力,仅据美国加州首府萨克 门托市的计划,到2000年太阳能热水器将取代该州47000套家用电热水器;到2000年日本太 阳能热水器的拥有量将翻一番;以色列更是明文规定,所有新建房屋必须配备太阳能热水器 。目前,我国是世界上太阳能热水器生产量和销售量最大的国家。1992年销售量为50万m2 ,为世界其他各国销售量之和;1995年销售量翻番,达100万m2。据初步统计,1997年我 国太阳能热水器销售量300万m2,目前,我国从事太阳能热水器研制、生产、销售和安装 的企业达到1000余家,年产值20亿元,从业人数1.5万人能源工程,1999 ,(1):59。但从房屋的热水器安装率来说,以色列已达80%,日本为11%,台 湾达2.7%.〔6〕.,我国在千分之几左右,其太阳能热水器的推广应用潜力仍很大。国 际上,太阳能热水器产品经历了闷晒式、平板式、全玻璃真空管式的发展,目前其产品的发 展方向仍注重提高集热器的效率,如将透明隔热材料应用于集热器的盖板与吸热间的隔层, 以减少热量损失;聚脂薄膜的透明蜂窝已在德国和以色列批量生产。.
随着世界范围内的环境意识和节能意识的普遍提高,太阳能热水器必将逐步替代电热水器和 燃气热水器。虽然太阳能热水器目前仍存在市场价格高、受季节和天气影响的不利因素,但 太阳能热水器具有不耗能、安全性、无污染性等优势,而且随着技术的发展其经济性也逐渐 显露出来。表1为三种热水器的经济指标比较结果.〔3〕.,从中可以看出,太阳能热水 器在经济上已具有较强的竞争力。��
表1三种热水器经济指标对比
项目品种寿命(年)
使用天数 (天)
购置费用�(元)
运行费用�(元)
总投资�(元)
备 注
太阳能热水器
10~15
300*2300
250
2550
均以日
产水量电热水器
5~8
300
1000
4500
550080kg
水温40燃气热水器
6
300
5003
700420
0~60℃计算
*有关专家认为该数字应为250天左右。��
2.1.2 太阳能热发电技术�
80年代太阳能热利用技术的最大突破是实现了太阳能热发电的商业化。Luz国际公司在美国 南加州自1984年至1991年共建造了9个柱形抛物槽镜分散聚光系统的太阳能热发电站,总功 率为354MW,约占当地电网容量的2%〔7〕。9座电站中最大的容量为80MW,约有900条 聚光槽组成。由于美国政府和州政府先后在1991年取消对太阳能电站的投资减免税优惠政策 ,迫使第10号电站停建,公司宣告破产。另一颇具实力的Solel公司也在致力于太阳能热发 电,它于1992年接收了破产的Luz公司的技术,将开发市场瞄向澳大利亚、以色列和北美洲 。Solel公司自称具有建造300MW大型太阳能热发电站的能力。该公司已开始在澳大利亚建造 一座70MW的槽型太阳能热发电装置,并计划在以色列建一座200MW的电站,同时正在洽谈在 北美洲和另两洲建三座电站,每座200~300MW。Solel公司在澳大利亚的另一目标是2000年 的悉尼奥运会,它和米尔斯公司将合建一个太阳能热发电的联合体,为奥运村旅馆和运动会 主会场提供10MW的电力〔7〕。希腊政府1997年开始实施一项500MW的太阳能热发电 项目,计划于2003年完工,届时将是世界上最大的太阳能电站。此外,它的阿莫科石油公司 将在印度沙漠地区建造一座更大的太阳能热电站沙特阿拉伯《中东报》,1997年12 月1日报道。�
目前,太阳能热发电在技术上和经济上可行的三种形式是:①30~80MW线聚焦抛物面槽式太 阳热发电技术(简称抛物面槽式);②30~200MW点聚焦中央接收式太阳热发电技术(简称塔式 );③7.5~25kW的点聚焦抛物面盘式太阳能热发电技术(简称抛物面盘式)。在上述三种技 术中,抛物面槽式领先一步,美国加州的9座太阳热发电站可以代表槽式热发电技术的发展 现状。塔式太阳热发电技术也是集中供电的一种适用技术,目前只有美国巴斯托建的一座叫 “SolarⅡ”的电站,功率为43MW,该电站成功运行两年后,两家美国电力公司计划建两座1 00MW的电站〔8〕。为了提高塔式电站的效率,有人提出了一种新想法〔8〕, 把带有太阳能塔的定日镜阵列附加到先进联合循环电站上作为燃料节省装置,采用甲烷重整 工艺,以太阳能提高天然气等级。抛物面盘式太阳热发电技术很适合于分散式发电,可以在 偏远地区用作独立系统。作为太阳能供电的一种方式,太阳热发电技术在经济上是可行的, 而且有较大的市场潜力。在美国加州的太阳热发电站建造过程中,由于技术进步及容量的增 大,电站的装机造价和发电成本显著下降,1984年Ⅰ号电站(14MW)造价为5979美元/kW,发 电成本26.5美分/kWh;到1990年的Ⅷ号电站(80MW),造价降至3011美元/kW,发电成本降到 8.9美分/kWh.〔9〕.。因此,抛物面槽式在太阳能丰富的地区,经济上已能与燃油的 火力电站竞争。我国西南电力设计院曾对西藏地区以引进Luz公司太阳能热电站进行估算, 如果考虑设备的折旧和还贷,太阳能热电站和火力发电站的发电成本均为1.1元/kWh,如果 不考虑设备折旧,仅计入运行和维护费用,则太阳能电站的发电成本为0.1元/kWh,而火力 发电站的成本为0.8元/kWh.〔9〕.。有人估算过13种太阳热电站在不同日照射条件下 的发电成本.〔8〕.,结果表明,随着年产电量的增加,主要是随着机组容量的增大、 日射强度的增高、部件和系统的进一步改进,发电成本显著下降。进而对地中海国家的太阳 能热发电应用进行过可行性研究,认为太阳能的热利用在这一地区具有特殊重 要性,具有巨大的市场潜力。一方面,地中海国家技术水平高、资金雄厚,且有很好的太阳 热发电示范和早期商业化基础;另一方面,未来几十年里,地中海国家能源需求量大,每年 要新增5~6GW,加之该地区太阳能资源丰富,年辐射强度大于1700kWh/m\+2的面积达到700 万km\+2,太阳热可发电容量达1200GW,是目前全球电力需求的4倍。所有这一切形成了地中 海地区广阔的太阳能热发电市场。� 2�2太阳能光电技术及其产业�
2.2.1太阳能光电已成为全球发展最快的能源�
50年代第一块实用的硅太阳电池的问世,揭开了光电技术的序幕,也揭开了人类利用太阳能 的新篇章。自60年代太阳电池进入空间、70年代进入地面应用以来,太阳能光电技术发展迅 猛。世界观察研究所在其最近一期研究报告中指出,利用太阳能获取电力已成为全球发展最 快的能量补给方式。报告说,1990年以来,全球太阳能光伏发电装置的市场销售量以年平均 16%的幅度递增,目前总发电能力已达800MW,相当于20万个美国家庭的年耗电量太阳能,1998,(4):22。�
2.2.2提高转换效率、降低成本是光电技术发展的关键�
当前影响光电池大规模应用的主要障碍是它的制造成本太高。在众多发电技术中,太阳能光 电仍是花费最高的一种形式,因此,发展阳光发电技术的主要目标是通过改进现有的制造工 艺,设计新的电池结构,开发新颖电池材料等方式降低制造成本,提高光电转换效率。近年 来,光伏工业呈现稳定发展的趋势,发展的特点是:产量增加,转换效率提高,成本降低, 应用领域不断扩大。目前,世界太阳电池年产量已超过150MW,是1944年产量的两倍还多, 如表2所示。单晶硅太阳电池的平均效率为15%,澳大利亚新南威尔士大学的实验室效率已 达24.4%;多晶硅太阳电池效率也达14%,实验室最大效率为19.8%;非晶硅太阳电池的稳 定效率,单结6~9%,实验室最高效率为12%,多结电池为8~10%,实验室最高效率为11.83 %.〔10〕.。表3��〔11〕�为有关研究人员所做的太阳能电池组件的效率预测。由于 生产规模的扩大,生产工艺的改进,晶体硅太阳电池组件的制造成本已降至3~3�5美元/W �p,售价也相应降到4~5美元/W�p;非晶硅太阳能电池单结售价3~4美元,多结售价为4~5 美元/W�p��〔10〕�。与十年前相比,太阳光电池价格普遍降低了20%。最近,瑞士联邦 工学院M·格雷策尔研制出一种二氧化钛太阳能电池,其光电转换率高达33%,并成功地采用 了一种无定形有机材料代替电解液,从而使它的成本比一块差不多大的玻璃贵不了多少,使 用起来也更加简便��〔12〕�。可以预料,随着技术的进步和市场的拓展,光电池成本及 售价将会大幅下降。表4��〔13〕�为地面用光伏组件成本/价格的预测结果,表5为美国 国家可再生能源实验室对太阳电池成本与市场的关系所做的估计��〔14〕�。对比表4, 表5,可以看出,2010年以后,由于太阳能电池成本的下降,可望使光伏技术进入大规模发 展时期。��
表2世界光电组件的产量及年增长率
年份1989199019911992199319941995199619971998
年产量(MW)42.047.054.058.261.070.781.090.612 2150年增长率(%)12%15%8%5%16%15%12%35%23%�
表4地面用太阳能电池组件成本/价格预测(美元)
电池种类1990199520002010
单晶硅3.25/5.402.40/4.001.50/2.501.20/2.00
多晶硅3.00/5.002.25/3.751.50/2.501.20/2.00
聚光电池3.00/5.002.00/3.301.20/2.001.00/1.67
非晶硅3.00/5.002.00/3.331.20/2.000.75/1.25
薄膜硅2.00/3.331.20/2.000.75/1.25
CIS2.00/3.331.20/2.000.75/1.25
CdTe1.50/2.501.20/2.000.75/1.25�
表5太阳能电池成本与市场的关系
太阳能电池成本�(美元/峰瓦)可进入的市场
>6少量应用2~5通信、边远地区
1~2城市屋顶系统<1大规模发电
表3商品化光伏直流组件效率预测(%)
电池技术199019952000 2010
单晶硅12151822
浇铸多晶硅11141620
带状硅12141721
聚光器(光电池)17202530
非晶硅(包括叠层电池)5~67~91014
CuInSe\-2-8~101214
CdTe-8~101214
低成本基片硅薄膜-8~101215
球粒电池-101214\= 2�2�3光伏新技术发展日新月异�
近年来,围绕光电池材料、转换效率和稳定性等问题,光伏技术发展迅速,日新月异。晶体 硅太阳能电池的研究重点是高效率单晶硅电池和低成本多晶硅电池。限制单晶硅太阳电池转 换效率的主要技术障碍有:①电池表面栅线遮光影响;②表面光反射损失;③光传导损失; ④内部复合损失;⑤表面复合损失。针对这些问题,近年来开发了许多新技术,主要有:① 单双层减反射膜;②激光刻槽埋藏栅线技术;③绒面技术;④背点接触电极克服表面栅线遮 光问题;⑤高效背反射器技术;⑥光吸收技术。随着这些新技术的应用,发明了不少新的电 池种类,极大地提高了太阳能电池的转换效率,如澳大利亚新南威尔士大学的格林教授采用 激光刻槽埋藏栅线等新技术将高纯化晶体硅太阳能电池的转换效率提高到24.4%,他在1994 年5月表示能用纯度低100倍的硅制成高效光电池,约在10年后采用该类电池的太阳能发电成 本可降至5~8美分/kWh.〔15〕.。光伏技术发展的另一特点是薄膜太阳能电池研究取得 重大进展和各种新型太阳能电池的不断涌现。晶体硅太阳能电池转换效率虽高,但其成本难 以大幅度下降,而薄膜太阳能电池在降低制造成本上有着非常广阔的诱人前景。早在几年 前,澳大利亚科学家利用多层薄膜结构的低质硅材料已使太阳能电池成本骤降80%,为此, 澳大利亚政府投资6400万美元支持这项研究,并希望10年内使该项技术商业化.〔16〕.。�
高效新型太阳能电池技术的发展是降低光电池成本的另一条切实可行的途径,近年来,一些 新型高效电池不断问世。专家推断,只要有一二种取得突破,就会使光电池局面得到极大的 改观。�
(1)硒化铜铟(CuInSe\-2,CIS)薄膜太阳能电池..〔17〕.:1974年CIS电池在美国问世,1 993年美国国家可再生能源实验室使它的本征转换效率达16.7%,由于CIS太阳能电池具有成 本低(膜厚只有单晶硅的1/100)、可通过增大禁带宽度提高转换效率(理论值为单晶30%,多 晶24%)、没有光致衰降、抗放射性能好等优点,各国都在争相研究开发,并积极探索大面积 应用的批量生产技术。�
(2)硅-硅串联结构太阳能电池〔18〕:通过非晶硅与窄禁带材料的层叠,是有效利用 长波太阳光,提高非晶硅太阳能电池转换效率的良好途径。研究表明,把1.3ev和1.7ev光 学禁带度组合起来的薄膜非晶硅与多晶硅串联电池转换效率最高。它具有成本低、耗能少、 工序少、价廉高效等优点。�
(3)用化学束外延(CBE)技术生产的多结Ⅲ-Ⅴ族化合物太阳能电池〔19〕:Ⅲ-Ⅴ族化 合物(如GaAs,InP)具有较高的光电转换效率,这些材料的多层匹配可将太阳能电池转换效率 提高到35%以上。而这种多层结构很容易用CBE法制作,并能以低于1美元/W�p的成本获得超 高效率。�
(4)大面积光伏纳米电池〔20〕:1991年瑞士M.Grtzel博士领导的研究小组 ,用纳米TiO\-2粉水溶液作涂料,和含有过渡族金属有机物的多种染料及玻璃等材料制作出 微晶颜料敏感太阳能电池,简称纳米电池。计算表明,可制造出转换效率至少为12%的低成 本电池。这种电池为大面积应用于建筑物外表面提供了广阔的前景。�
2.2.4各国的光伏计划雄心勃勃�
随着太阳能光电技术的日趋成熟和商业化发展,太阳能光电技术的推广应用有了长足的进展 。目前,已建成多座兆瓦级光伏电站,最大的是位于美国加州的光伏电站,容量为6.5MW. p,现正在希腊克里特岛建造的一座阳光电站,容量为50MW.p,估计2003年可建成供电,总 投资1775万美元新能源,1997,19(2):23。而在美国准备建造的另一座电 站规模将达到100MW.p,已与太阳能热发电站容量相匹敌。除此之外,一些国家推出的屋顶 计划将更引人注目,显示了阳光发电的广阔应用前景和强大的生命力。1990年,德国政府率 先推出的“千顶计划”,至1997年已完成近万套屋顶光伏系统,每套容量1~5kW.p,累计 安装量已达33MW.p,远远地超出了当初制定的计划规模。日本政府从1994年开始实施“朝 日七年计划”,计划到2000年安装16.2万套屋顶系统,总容量达185MW.p,1997年又再次 宣布实施“七万屋顶计划”,每套容量扩大到4kW.p,总容量为280MW.p。印度于1997年12 月宣布在2002年前推广150万套太阳能屋顶系统。意大利1998年开始实施“全国太阳能屋顶 计划”,总投入5500亿里拉,总容量达50MW.p。而最雄心勃勃的屋顶计划当属1997年6月美 国总统克林顿宣布实施的美国“百万屋顶计划”,计划从1997年开始至2010年,将在百万个 屋顶上,安装总容量达到3025MW.p的光伏系统,并使发电成本降到6美分/kWh。上述各国屋 顶计划的实施,将有力地促进太阳能光电的应用普及,使太阳能光电进入千家万户。�
与此相呼应,当前世界上实力雄厚的10家光伏公司,虽然目前的生产能力都不大,但都有雄 心勃勃的扩展计划。各公司年产目标为:Kyocera公司和夏普公司60MW,BP太阳能公司50MW ,西门子公司和Solarex公司30MW,壳牌/Pilington公司和ASE公司25MW,Photo wott公司, AP公司和三洋/Solec公司15MW。据美国Spire公司预测,2003年世界光电池的生产能力将达 到350MW,而2010年的光电池组件交易量将达到700~4000MW/年②�。�
光伏技术发展的趋势,近期将以高效晶体硅电池为主,然后逐步过渡到薄膜太阳能电池和各 种新型太阳能光电池的发展。应用上将从屋顶系统突破,逐步过渡到与建筑一体化的大型并 网光伏电站的发展。�
2.3太阳能光电制氢�
70年代科学家发现:在阳光辐照下TiO2之类宽频带间隙半导体,可对水的电解提供所需能 量,并析出O2和H2,从而在太阳能转换领域产生了一门新兴学科--光电化学。随着光 电化学及光伏技术和各种半导体电极试验的发展,使得太阳能制氢成为发展氢能产业的最佳 选择。�
1995年,美国科学家利用光电化学转换中半导体/电介质界面产生的隔栅电压,通过固定两 个光粒子床的方法,来解决水的光催化分离问题取得成功〔22〕。其两个光粒子床概 念的光电化学水分解机制为:�
H2的光反应4H2O+4M°→2H2+4OH-+4M+�
O2的光反应4OH-+M+→O2+2H2O+4M°�
净结果为:2H2O→2H2+O2(其中M为氧化还原介质)�
近来,美国国家可再生能源实验室还推出了一种利用太阳能一次性分解成氢燃料的装置。该 装置的太阳能转换率为12.5%,效率比水的二步电解法提高一倍,制氢成本也只有电解法的 大约1/4〔23〕。日本理工化学研究所以特殊半导体做电极,铂对极,电解质为硝酸 钾,在太阳光照射下制得了氢,光能利用效率为15%左右〔24〕。�
在太阳能制氢产业方面,1990年德国建成一座500kW太阳能制氢示范厂,沙特阿拉伯已建成 发电能力为350kW的太阳能制氢厂〔24〕。印度于1995年推出了一项制氢计划,投资4 800万美元,在每年有300个晴天的塔尔沙漠中建造一座500kW太阳能电站制氢,用光伏-电解 系统制得的氢,以金属氧化物的形式贮存起来,保证运输的安全新能源,17(3),19 95,19。自90年代以来,德、英、日、美等国已投资积极进行氢能汽车的开发。美 国佛罗里达太阳能中心研究太阳能制氢(SH)已达10年之久,最近用SH作为汽车燃料-压缩天 然气的一种添加剂,使SH在高价值利用方面获得成功〔25〕,为氢燃料汽车的实用化 提供了重要基础。其他,在对重量十分敏感的航天、航空领域以及氢燃料电池和日常生活中 “贮氢水箱”的应用等方面氢能都将获得特别青睐。�
由于氢是一种高效率的含能体能源,它具有重量最轻、热值高、“爆发力”强、来源广、品 质纯净、贮存便捷等许多优点
太阳能的利用
【利用太阳能的历史】
据记载,人类利用太阳能已有3000多年的历史。将太阳能作为一种能源和动力加以利用,只有300多年的历史。真正将太阳能作为“近期急需的补充能源”,“未来能源结构的基础”,则是近来的事。20世纪70年代以来,太阳能科技突飞猛进,太阳能利用日新月异。近代太阳能利用历史可以从1615年法国工程师所罗门•德•考克斯在世界上发明第一台太阳能驱动的发动机算起。该发明是一台利用太阳能加热空气使其膨胀做功而抽水的机器。在1615年~1900年之间,世界上又研制成多台太阳能动力装置和一些其它太阳能装置。这些动力装置几乎全部采用聚光方式采集阳光,发动机功率不大,工质主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能爱好者个人研究制造。20世纪的100年间,太阳能科技发展历史大体可分为七个阶段。
第一阶段(1900~1920年)
在这一阶段,世界上太阳能研究的重点仍是太阳能动力装置,但采用的聚光方式多样化,且开始采用平板集热器和低沸点工质,装置逐渐扩大,最大输出功率达73.64kW,实用目的比较明确,造价仍然很高。建造的典型装置有:1901年,在美国加州建成一台太阳能抽水装置,采用截头圆锥聚光器,功率:7.36kW;1902 ~1908年,在美国建造了五套双循环太阳能发动机,采用平板集热器和低沸点工质;1913年,在埃及开罗以南建成一台由5个抛物槽镜组成的太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。
第二阶段(1920~1945年)
在这20多年中,太阳能研究工作处于低潮,参加研究工作的人数和研究项目大为减少,其原因与矿物燃料的大量开发利用和发生第二次世界大战(1935~1945年)有关,而太阳能又不能解决当时对能源的急需,因此使太阳能研究工作逐渐受到冷落。 第三阶段(1945~1965年)
在第二次世界大战结束后的20年中,一些有远见的人士已经注意到石油和天然气资源正在迅速减少, 呼吁人们重视这一问题,从而逐渐推动了太阳能研究工作的恢复和开展,并且成立太阳能学术组织,举办学术交流和展览会,再次兴起太阳能研究热潮。 在这一阶段,太阳能研究工作取得一些重大进展,比较突出的有:1945年,美国贝尔实验室研制成实用型硅太阳电池,为光伏发电大规模应用奠定了基础;1955年,以色列泰伯等在第一次国际太阳热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了条件。此外,在这一阶段里还有其它一些重要成果,比较突出的有: 1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的太阳炉。1960年,在美国佛罗里达建成世界上第一套用平板集热器供热的氨——水吸收式空调系统,制冷能力为5冷吨。1961年,一台带有石英窗的斯特林发动机问世。在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上的重大突破。平板集热器有了很大的发展,技术上逐渐成熟。太阳能吸收式空调的研究取得进展,建成一批实验性太阳房。对难度较大的斯特林发动机和塔式太阳能热发电技术进行了初步研究。
第四阶段(1965~1973年)
这一阶段,太阳能的研究工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。
第五阶段(1973~1980年)
自从石油在世界能源结构中担当主角之后,石油就成了左右经济和决定一个国家生死存亡、发展和衰退的关键因素,1973年10月爆发中东战争,石油输出国组织采取石油减产、提价等办法,支持中东人民的斗争,维护本国的利益。其结果是使那些依靠从中东地区大量进口廉价石油的国家,在经济上遭到沉重打击。 于是,西方一些人惊呼:世界发生了“能源危机”(有的称“石油危机”)。这次“危机”在客观上使人们认识到:现有的能源结构必须彻底改变,应加速向未来能源结构过渡。从而使许多国家,尤其是工业发达国家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。1973年,美国制定了政府级阳光发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太阳能产品的商业化。日本在1974年公布了政府制定的“阳光计划”,其中太阳能的研究开发项目有:太阳房 、工业太阳能系统、太阳热发电、太阳电池生产系统、分散型和大型光伏发电系统等。为实施这一计划,日本政府投入了大量人力、物力和财力。70年代初世界上出现的开发利用太阳能热潮,对我国也产生了巨大影响。一些有远见的科技人员,纷纷投身太阳能事业,积极向政府有关部门提建议,出书办刊,介绍国际上太阳能利用动态;在农村推广应用太阳灶 ,在城市研制开发太阳能热水器,空间用的太阳电池开始在地面应用……。 1975年,在河南安阳召开“全国第一次太阳能利用工作经验交流大会”,进一步推动了我国太阳能事业的发展。这次会议之后,太阳能研究和推广工作纳入了我国政府计划,获得了专项经费和物资支持。一些大学和科研院所,纷纷设立太阳能课题组和研究室,有的地方开始筹建太阳能研究所。当时,我国也兴起了开发利用太阳能的热潮。 这一时期,太阳能开发利用工作处于前所未有的大发展时期,具有以下特点:
各国加强了太阳能研究工作的计划性,不少国家制定了近期和远期阳光计划。开发利用太阳能成为政府行为,支持力度大大加强。国际间的合作十分活跃,一些第三世界国家开始积极参与太阳能开发利用工作。
研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、非晶硅太阳电池、 光解水制氢、太阳能热发电等。
各国制定的太阳能发展计划,普遍存在要求过高、过急问题,对实施过程中的困难估计不足,希望在较短的时间内取代矿物能源,实现大规模利用太阳能。例如,美国曾计划在1985年建造一座小型太阳能示范卫星电站,1995年建成一座500万kW空间太阳能电站。事实上,这一计划后来进行了调整,至今空间太阳能电站还未升空。 太阳热水器、太阳电池等产品开始实现商业化,太阳能产业初步建立,但规模较小,经济效益尚不理想。
第六阶段(1980~1992年)
70年代兴起的开发利用太阳能热潮,进入80年代后不久开始落潮,逐渐进入低谷。世界上许多国家相继大幅度削减太阳能研究经费,其中美国最为突出。导致这种现象的主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用。 受80年代国际上太阳能低落的影响,我国太阳能研究工作也受到一定程度的削弱,有人甚至提出:太阳能利用投资大、效果差、贮能难、占地广,认为太阳能是未来能源,主张外国研究成功后我国引进技术。虽然,持这种观点的人是少数,但十分有害,对我国太阳能事业的发展造成不良影响。这一阶段,虽然太阳能开发研究经费大幅度削减,但研究工作并未中断,有的项目还进展较大,而且促使 人们认真地去审视以往的计划和制定的目标,调整研究工作重点,争取以较少的投入取得较大的成果。
第七阶段(1992年~至今)
由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。在这样背景下,1992年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》, 《21世纪议程》和《联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了 可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在 一起,使太阳能利用工作走出低谷,逐渐得到加强。世界环发大会之后,我国政府对环境与发展十分重视,提出10条对策和措施,明确要“因地制宜地开发和推广太阳能、风能、地热能、潮汐能、生物质能等清洁能源”,制定了《中国21世纪议程》,进一步明确 了太阳能重点发展项目。1995年国家计委、国家科委和国家经贸委制定了《新能源和可再生能源发展纲要》 (1996 ~ 2010年),明确提出我国在1996-2010年新能源和可再生能源的发展目标、任务以及相应的对策和措施 。这些文件的制定和实施,对进一步推动我国太阳能事业发挥了重要作用。 1996年,联合国在津巴布韦召开“世界太阳能高峰会议”,会后发表了《哈拉雷太阳能与持续发展宣言 》,会上讨论了《世界太阳能10年行动计划》(1996 ~ 2005年),《国际太阳能公约》,《世界太阳能战略规划》等重要文件。这次会议进一步表明了联合国和世界各国对开发太阳能的坚定决心,要求全球共同行动 ,广泛利用太阳能。1992年以后,世界太阳能利用又进入一个发展期,其特点是:太阳能利用与世界可持续发展和环境保护紧密结合,全球共同行动,为实现世界太阳能发展战略而努力;太阳能发展目标明确,重点突出,措施得力,有利于克服以往忽冷忽热、过热过急的弊端,保证太阳能事业的长期发展;在加大太阳能研究开发力度的同时,注意科技成果转化为生产力,发展太阳能产业,加速商业化进程,扩大太阳能利用领域和规模,经济效益逐渐提高;国际太阳能领域的合作空前活跃,规模扩大,效果明显。通过以上回顾可知,在本世纪100年间太阳能发展道路并不平坦,一般每次高潮期后都会出现低潮期,处于低潮的时间大约有45年。太阳能利用的发展历程与煤、石油、核能完全不同,人们对其认识差别大,反复多,发展时间长。这一方面说明太阳能开发难度大,短时间内很难实现大规模利用;另一方面也说明太阳能利用还受矿物能源供应,政治和战争等因素的影响,发展道路比较曲折。尽管如此,从总体来看,20世纪取得的太阳能科技进步仍比以往任何一个世纪都大。
【利弊】
优点:�
(1)普遍:太阳光普照大地,没有地域的限制无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且勿须开采和运输。�
(2)无害:开发利用太阳能不会污染环境,它是最清洁的能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。�
(3)巨大:每年到达地球表面上的太阳辐射能约相当于130万亿t标煤,其总量属现今世界上可以开发的最大能源。�
(4)长久:根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。�
缺点:�
(1)分散性:到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1000W左右;若按全年日夜平均,则只有200W左右。而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。�
(2)不稳定性:由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来,以供夜间或阴雨天使用,但目前蓄能也是太阳能利用中较为薄弱的环节之一。�
(3)效率低和成本高:目前太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。但有的太阳能利用装置,因为效率偏低,成本较高,总的来说,经济性还不能与常规能源相竞争。在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。�
太阳能利用中的经济问题:�
第一,世界上越来越多的国家认识到一个能够持续发展的社会应该是一个既能满足社会需要,而又不危及后代人前途的社会。因此,尽可能多地用洁净能源代替高含碳量的矿物能源,是能源建设应该遵循的原则。随着能源形式的变化,常规能源的贮量日益下降,其价格必然上涨,而控制环境污染也必须增大投资。
第二,我国是世界上最大的煤炭生产国和消费国,煤炭约占商品能源消费结构的76%,已成为我国大气污染的主要来源。大力开发新能源和可再生能源的利用技术将成为减少环境污染的重要措施。能源问题是世界性的,向新能源过渡的时期迟早要到来。从长远看,太阳能利用技术和装置的大量应用,也必然可以制约矿物能源价格的上涨。
【太阳能热利用】
就目前来说,人类直接利用太阳能还处于初级阶段,主要有太阳能集热、太阳能热水系统、太阳能暖房、太阳能发电等方式。
太阳能集热器
太阳能热水器装置通常包括太阳能集热器、储水箱、管道及抽水泵其他部件。另外在冬天需要热交换器和膨胀槽以及发电装置以备电厂不能供电之需 。太阳能集热器(solar collector)在太阳能热系统中,接受太阳辐射并向传热工质传递热量的装置。按传热工质可分为液体集热器和空气集热器。按采光方式可分为聚光型集热器和吸热型集热器两种。另外还有一种真空集热器:一个好的太阳能集热器应该能用20~30年。自从大约1980年以来所制作的集热器更应维持40~50年且很少进行维修。
太阳能热水系统
早期最广泛的太阳能应用即用于将水加热,现今全世界已有数百万太阳能热水装置。太阳能热水系统主要元件包括收集器、储存装置及循环管路三部分。此外,可能还有辅助的能源装置(如电热器等)以供应无日照时使用,另外尚可能有强制循环用的水,以控制水位或控制电动部份或温度的装置以及接到负载的管路等。依循环方式太阳能热水系统可分两种:
1、自然循环式:
此种型式的储存箱置于收集器上方。水在收集器中接受太阳辐射的加热,温度上升,造成收集器及储水箱中水温不同而产生密度差,因此引起浮力,此一热虹吸现像,促使水在除水箱及收集器中自然流动。由与密度差的关系,水流量于收集器的太阳能吸收量成正比。此种型式因不需循环水,维护甚为简单,故已被广泛采用。
2、强制循环式:
热水系统用水使水在收集器与储水箱之间循环。当收集器顶端水温高于储水箱底部水温若干度时,控制装置将启动水使水流动。水入口处设有止回阀以防止夜间水由收集器逆流,引起热损失。由此种型式的热水系统的流量可得知(因来自水的流量可知),容易预测性能,亦可推算于若干时间内的加热水量。如在同样设计条件下,其较自然循环方式具有可以获得较高水温的长处,但因其必须利用水,故有水电力、维护(如漏水等)以及控制装置时动时停,容易损坏水等问题存在。因此,除大型热水系统或需要较高水温的情形,才选择强制循环式,一般大多用自然循环式热水器。
暖房
利用太阳能作房间冬天暖房之用,在许多寒冷地区已使用多年。因寒带地区冬季气温甚低,室内必须有暖气设备,若欲节省大量化石能源的消耗,设法应用太阳辐射热。大多数太阳能暖房使用热水系统,亦有使用热空气系统。太阳能暖房系统是由太阳能收集器、热储存装置、辅助能源系统,及室内暖房风扇系统所组成,其过程乃太阳辐射热传导,经收集器内的工作流体将热能储存,再供热至房间。至辅助热源则可装置在储热装置内、直接装设在房间内或装设于储存装置及房间之间等不同设计。当然亦可不用储热双置而直接将热能用到暖房的直接式暖房设计,或者将太阳能直接用于热电或光电方式发电,再加热房间,或透过冷暖房的热装置方式供作暖房使用。最常用的暖房系统为太阳能热水装置,其将热水通至储热装置之中(固体、液体或相变化的储热系统),然后利用风扇将室内或室外空气驱动至此储热装置中吸热,再把此热空气传送至室内;或利用另一种液体流至储热装置中吸热,当热流体流至室内,在利用风扇吹送被加热空气至室内,而达到暖房效果。
太阳能发电
即直接将太阳能转变成电能,并将电能存储在电容器中,以备需要时使用。
太阳能离网发电系统
太阳能离网发电系统包括1、太阳能控制器(光伏控制器和风光互补控制器)对所发的电能进行调节和控制,一方面把调整后的能量送往直流负载或交流负载,另一方面把多余的能量送往蓄电池组储存,当所发的电不能满足负载需要时,太阳能控制器又把蓄电池的电能送往负载。蓄电池充满电后,控制器要控制蓄电池不被过充。当蓄电池所储存的电能放完时,太阳能控制器要控制蓄电池不被过放电,保护蓄电池。控制器的性能不好时,对蓄电池的使用寿命影响很大,并最终影响系统的可靠性。2、太阳能蓄电池组的任务是贮能,以便在夜间或阴雨天保证负载用电。3、太阳能逆变器负责把直流电转换为交流电,供交流负荷使用。太阳能逆变器是光伏风力发电系统的核心部件。由于使用地区相对落后、偏僻,维护困难,为了提高光伏风力发电系统的整体性能,保证电站的长期稳定运行,对逆变器的可靠性提出了很高的要求。另外由于新能源发电成本较高,太阳能逆变器的高效运行也显得非常重要。
太阳能离网发电系统主要产品分类 A、光伏组件 B、风机 C、控制器 D、蓄电池组 E、逆变器 F、风力/光伏发电控制与逆变器一体化电源。
太阳能并网发电系统
可再生能源并网发电系统是将光伏阵列、风力机以及燃料电池等产生的可再生能源不经过蓄电池储能,通过并网逆变器直接反向馈入电网的发电系统。
因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用可再生能源所发出的电力,减小能量损耗,降低系统成本。并网发电系统能够并行使用市电和可再生能源作为本地交流负载的电源,降低整个系统的负载缺电率。同时,可再生能源并网系统可以对公用电网起到调峰作用。并网发电系统是太阳能风力发电的发展方向,代表了21世纪最具吸引力的能源利用技术。
太阳能并网发电系统主要产品分类 A、光伏并网逆变器 B、小型风力机并网逆变器 C、大型风机变流器 (双馈变流器,全功率变流器)。
× 太阳能路灯
太阳能路灯是一种利用太阳能作为能源的路灯,因其具有不受供电影响,不用开沟埋线,不消耗常规电能,只要阳光充足就可以就地安装等特点,因此受到人们的广泛关注,又因其不污染环境,而被称为绿色环保产品。太阳能路灯即可用于城镇公园、道路、草坪的照明,又可用于人口分布密度较小,交通不便经济不发达、缺乏常规燃料,难以用常规能源发电,但太阳能资源丰富的地区,以解决这些地区人们的家用照明问题。
太阳能利用新近展
目前国际上已经从晶体硅、薄膜太阳能电池开发进入了有机分子电池、生物分子筛选乃至于合成生物学与光合作用生物技术开发的生物能源的太阳能技术新领域。
日前从上海市科委获悉,华东师范大学科研人员利用纳米材料在实验室中成功“再造”叶绿体,以极其低廉的成本实现光能发电。
叶绿体是植物进行光合作用的场所,能有效将太阳的光能量转化成化学能。此次课题组并非在植物体外“拷贝”了一个叶绿体,而是研制出一种与叶绿体结构相似的新型电池———染料敏化太阳能电池,尝试将光能转化成电能。在上海市纳米专项基金的支持下,经过3年多实验与探索,这块仿生太阳能电池的光电转化效率已超过10%,接近11%的世界最高水平。
项目负责人、华东师大纳光电集成与先进装备教育部工程研究中心主任孙卓教授展示了新型太阳能电池的“三明治”结构———中空玻璃夹着一层纳米“夹心”,光电转化的玄机就藏在这层几十微米厚的复合薄膜中。纳米“夹心”的“配方”十分独特:染料充当“捕光手”,纳米二氧化钛则是“光电转换器”。为了让染料尽可能多“吃”太阳光,科研人员还别出心裁地撒了点“佐料”———一种由纳米荧光材料制成的量子点,让不同波长的阳光都能对上“捕光手”的“胃口”。只要不断改进“配方”,纳米“夹心”的光电转化效率就能一次次提高。
作为第三代太阳能电池,染料敏化电池的最大吸引力在于廉价的原材料和简单的制作工艺。据估算,染料敏化电池的成本仅相当于硅电池板的1/10。同时,它对光照条件要求不高,即便在阳光不太充足的室内,其光电转化率也不会受到太大影响。另外,它还有许多有趣用途。比如,用塑料替代玻璃“夹板”,就能制成可弯曲的柔性电池;将它做成显示器,就可一边发电,一边发光,实现能源自给自足。
太阳能是一种洁净和可持续产生的能源,发展太阳能科技可减少在发电过程中使用矿物燃料,从而减轻空气污染及全球暖化的问题。
我国太阳能利用产业现状
中国蕴藏着丰富的太阳能资源,太阳能利用前景广阔。目前,我国太阳能产业规模已位居世界第一,是全球太阳能热水器生产量和使用量最大的国家和重要的太阳能光伏电池生产国。我国比较成熟太阳能产品有两项:太阳能光伏发电系统和太阳能热水系统。
我国太阳能利用产业前景
中国《可再生能源法》的颁布和实施,为太阳能利用产业的发展提供了政策保障;京都议定书的签定,环保政策的出台和对国际的承诺,给太阳能利用产业带来机遇;西部大开发,为太阳能利用产业提供巨大的国内市场;原油价格的上涨,中国能源战略的调整,使得政府加大对可再生能源发展的支持力度,所有这些都为中国太阳能利用产业的发展带来极大的机会。
利用方式
太阳能利用基本方式可以分为如下4大类。
(1)光热利用
它的基本原来是将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用。[3]目前使用最多的太阳能收集装置,主要有平板型集热器、真空管集热器和聚焦集热器等3种。通常根据所能达到的温度和用途的不同,而把太阳能光热利用分为低温利用(<200℃)、中温利用(200~800℃)和高温利用(>800℃)。目前低温利用主要有太阳能热水器、太阳能干燥器、太阳能蒸馏器、太阳房、太阳能温室、太阳能空调制冷系统等,中温利用主要有太阳灶、太阳能热发电聚光集热装置等,高温利用主要有高温太阳炉等。
(2)太阳能发电
未来太阳能的大规模利用是用来发电。利用太阳能发电的方式有多种。目前已实用的主要有以下两种。
①光—热—电转换。即利用太阳辐射所产生的热能发电。一般是用太阳能集热器将所吸收的热能转换为工质的蒸汽,然后由蒸汽驱动气轮机带动发电机发电。前一过程为光—热转换,后一过程为热—电转换。
②光—电转换。其基本原理是利用光生伏打效应将太阳辐射能直接转换为电能,它的基本装置是太阳能电池。
(3)光化利用
这是一种利用太阳辐射能直接分解水制氢的光—化学转换方式。
(4)光生物利用
通过植物的光合作用来实现将太阳能转换成为生物质的过程。目前主要有速生植物(如薪炭林)、油料作物和巨型海藻。
太阳能未来的发展趋势?
未来5年内趋势不好,油气资源的深开发,制造太阳能板的高污染,用地面积,使其出于高成本。未来10年看政治,如果美国德国等继续推行新能源计划,关闭核电站的同时减少油气资源开发,太阳能发展不错。未来百年看猜,可控核聚变如果能效比高了那没有太阳能的位置,如果能效比还是低下,太阳能。。还是成为不了主流能源。太阳能的电力输送不如火电稳,效能比远输于其他能源。
世界各国对太阳能利用的现状、取得的成就
太阳能利用现状及对策
新能源是二十一世纪世界经济发展中最具决定力的五大技术领域之一。太阳能是一种清洁、高效和永不衰竭的新能源。在新实际中,各国政府都将太阳能资源利用作为国家可持续发展战略的重要内容。而光伏发电具有安全可靠、无噪声、无污染、制约少、故障率低、维护简便等优点,在我国西部广袤严寒、地形多样和居住分散的现实条件下,有着非常独特的作用。
一、国内外太阳能利用概况
1.l国外现状
常规能源资源的有限性和环境压力的增加,使世界上许多国家重新加强了对新能源和可再生能源技术发展的支持。近几年,国际光伏发电迅猛发展。1973年,美国制定了政府级阳光发电计划;1980年又正式将光伏发电列入公共电力规划,累计投资达8亿多美元;1994年度的财政预算中,光伏发电的预算达7800多万美元,比1993年增加了23.4%;1997年美国和欧洲相继宣布"百万屋顶光伏计划",美国计划到2010年安装1000~3000MW太阳电池。日本不甘落后,1997年补贴"屋顶光伏计划"的经费高达9200万美元,安装目标是7600Mw。印度计划1998-002年太阳电池总产量为150MW,其中2002年为50MW。
国际光伏发电正在由边远农村和特殊应用向并网发电和与建筑结合供电的方向发展,光伏发电已由补充能源向替代能源过渡。到目前为止,世界太阳电池年销售量己超过60兆瓦,电池转换效率提高到15%以上,系统造价和发电成本已分别降至4美元/峰瓦和25美分/度电;在太阳热利用方面,由于技术日趋成熟,应用规模越来越大,仅美国太阳能热水器年销售额就逾10亿美元。太阳能热发电在技术上也有所突破,目前已有20余座大型太阳能热发电站正在运行或建设。
1.2国内现状
煤炭巨量消费已成为我国大气污染的主要来源。我国具有丰富的太阳能、风能、生物质能、地热能和海洋能等新能源和可再生能源资源,开发利用前景广阔。太阳能光伏发电应用始于70年代,真正快速发展是在80年代。在1983年一1987年短短的几年内先后从美国、加拿大等国引进了七条太阳电池生产线,使我国太阳电池的生产能力从1984年以前的年产200千瓦跃到1988年的4.5兆瓦。目前太阳电池主要应用于通信系统和边远无电县、无电乡村、无电岛屿等边远偏辟无电地区,年销售约1.1兆瓦,成效显著。
(1)建成了40多座县、乡级小型光伏电站,光伏电池总装机容量约600kw,其中西藏最多,达450多kw;1998年10月建成我国最大的西藏那曲安多县光伏电站的光伏电池装机容量高达100kw。
(2)家用光伏电源在青海、内蒙古、新疆、甘肃、宁夏、西藏以及辽宁、吉林、河北、海南、四川等地广泛应用。据不完全统计,至今全国已累计推广家用光伏电源约15万台,光伏电池总功率约达2.9MW。
(3)在22所农村学校建立了光伏电站,光伏电池组件的总装机容量为57kw。
(4)1998年中国通信史上建成难度最大的兰一西一拉光缆干线工程,有26个光缆通信站采用光伏电池作电源,其海拔高度多在4500m以上,光伏电池组件的总功率达100kw。
(5)1996年建成了塔中4--轮南输油输气管道阴极保护先伏电源系统,总功率为 40kw。该系统横贯环境恶劣复杂的塔克拉玛干大沙漠,总长达300Km。
(6)1995年,63个国家重点援藏项目一西藏广播电视发射接收工程采用光伏电池供电,共建成216套卫视接收站和* 套调频发射站光伏电池供电系统,总功率为300多kw。
二、西部太阳能应用概况
2.1自然资源
我国西部地区是世界上最大、地势较高的自然地理单元。也是世界上最丰富的太阳能资源地区之一,尤其是西藏地区,空气稀薄,透明度高,年日照时间长达1600一3400小时之间,每天日照6小时以上年平均天数在275--330天之间,辐射强度大,年均辐射总量7000兆焦耳/平方米,地域呈东向西递增分布,年变化呈峰型,资源优势得天独厚,应用前景十分广阔。
2.2能源状况
西部大部分地区能源极其匾乏,多年来坚持积极稳妥开发地热,努力推进太阳能利用,有计划、有步骤地更替油电,适当发展风力发电;因地制宜,多能互补,大中小结合,以中小型为主;电网建设与电源建设同步,建设与管理并重,开发与节能并举的方针,但人均装机容量和年发电量仍落后于全国平均水平。尤其是西藏地区,是全国发电量和人均用电量最小的省份。无电人口仍以酥油灯、柴油灯和蜡烛照明,有些家庭酥油灯已无力承担,学生在烧牛粪炉时的昏暗光线下做作业,极个别乡沿用老柴油发电机解决短时间照明。鉴此,既无资源建设水电站,火电又恐难发展,要依靠电网延伸把"光明"送到横亘遥远、居住稀疏的农牧民家中,其输变线成本令人咋舌。光明、能源成为老百姓多年翘首以待的夙愿,突出的电力瓶颈,成为西藏经济发展和社会进步的桎格,阻碍了人民生活水平的提高,影响了群众摆脱贫困,消除愚昧,治穷致富的步伐,是贫困落后的主要根源,勿庸置疑,利用太阳能光伏发电是解决这一问题重要而有效的途径。
2.3太阳能应用
处处阳光处处电。西部地区利用太阳能光伏发电在解决通信、广播、电视电源和无电人口用电等方面已经开始取得显著成效,曾成功地实施了"科学之光"、"阳光计划"、"阿里光电计划"等太阳能专项计划,成为全国第一个也是规模最大的实施太阳能专项计划的地区。以西藏地区为例:
2.3.1光伏电站
截止1999年,建成县级独立光伏电站7座,消灭了6个无电县,总装机容量450KWp,居全国第一,安多 100KWp光伏电站全国最大,双湖海拔 5100米跟踪式光电站世界最高。
2.3.2通讯电源
提供微波中继站光伏电源约达200KW以上;电话乡乡通电源100多千瓦;在兰西拉光缆通信工程西藏段附近600公里的工程中,应用光伏电源近100KW,光伏电池电源增量迅速。
2.3.3广播电视电源
在狮泉河、改则、门士煤矿等地建起约20余座以光伏发电作电源的卫星电视收转站和电视差转台,总装机容量约20KW左右。还有100多套广播电视用光伏电源系统100多千瓦。
2.3.4光伏水泵
西藏无水草场面积巨大,光伏水泵的潜在市场需求数量可观,很应用前景广阔,狮泉河、日土、改则、尼玛、扎囊等地建成6座光伏水泵系统,总装机容量2个多千瓦,除解决草场灌溉外,还解决了本地区的人畜饮水问题,结束了依靠人力背水的历史,极大的解放了劳动力。
2.3.5户用光伏电源系统
推广户用光伏电源l0-300W系统3万多套,总容量达60千瓦左右,既可供家庭独立固定使用,又能供游牧家庭使用,便携简便,安全可靠,性能优越,深受欢迎;山南昌珠多桑德庆村每户安装光伏电源40Wp,25户农牧民解决了照明、看电视、收听广播录音机的供电问题,被称为太阳村。
2.3.6学校光伏电站
近10所学校建成太阳能光伏电站,墨竹工卡唐家乡小学2KW光伏电站是国内最大的非晶硅光伏示范电站。西藏至今有600多所乡级学校尚未通电,均为寄宿学校,尽早解决学校供电问题和电化教学等,对提高西藏青少年一代的科学文化素质至关重要,是今后光伏发电应用的重要方面。
2.3.7边防哨所光伏电源系统
西藏多数边防哨所无电,有20多个边防哨所安装光伏电源系统,解决照明、看电视、听收录机及通信的供电问题,每座功率为1~2KW,极大地改善了边防官兵的工作生活条件。
目前,西藏已在7个县建成10-100KW规模较大的县级太阳能光电站,全区各类太阳能光电设施容量超过2MW,推广太阳能热水器8.5万多平方米,太阳灶9.l万台,太阳能采暖房、温室、牛羊暖圈等18万平方米,是全国太阳能应用率最高、应用面和规模最大、用途最广泛的省份。
3 存在的主要问题
我国有9亿多人生活在农村,l.2亿人口没用上电15-8%的人口未解决清洁饮水;约4000万人生活在贫困线以下。由于农村燃料等能源短缺,利用水平低,造成森林过度樵采,植被破坏,生态环境恶化,严重阻碍农村经济和社会的发展。面对压力,太阳能应用速度慢,力度小,还存在一定问题:
3.1对开发太阳能资源的战略意义认识不够
一是没有把发展太阳能完全纳入政府的议事日程;二是长期以来,太阳能项目没有常规能源建设项目那样的固定资金渠道或已有的资金渠道不畅。从观念看,是对开发推广太阳能可以减少或替代常规能源和实施可持续发展战略的意义认识不足。
3.2缺乏完整的激励政策
政府支持是发展太阳能的关键,也是太阳能产业发展的初始动力。目前缺少有利于太阳能产业发展和刺激广大居民应用光伏电源装置等新能源设备的激励政策。
3.3投人力度不够
长远规划,缺少资金支持,对太阳能进入市场的全面影响是难以预测的。部分省市自治区对扶持推广太阳能实行专项补贴,使太阳能得到有效推广。但由于投入过少,分散,尤其是光伏电池等关键原器件,大部分遗稿进口,造成太阳能成本高,群众购买力有限,太阳能的成熟技术很难尽快大规模推广应用到无电群众中去。
4 太阳能推广对策
目前我国开发应用的各类新能源和可再生能源年提供相当于3亿多吨标准煤,对促进国民经济发展和满足广大农村和边远地区人民生活的能源需求起到了重要作用。特殊的地缘,西藏的广大农牧民视光伏电源系统是他们多年企盼的"点灯不用油、娱乐有节目"的法宝,太阳能光伏系统确实有潜力为农村和边远地区提供非联网电力,其成本低于外地运燃料或延伸输电线路的成本。因地制宜,大力开发利用太阳能等新能源,把它们转化为高品位的电能,提供照明、广播电视、通讯、水泵等动力能源,对促进脱贫致富,经济和生态环境协调发展,实现小康具有重大意义。为进一步搞好太阳能光伏电源系统的推广应用,建议采取如下一些措施:
4.1提高太阳能应用地位
西部地区要加强太阳能应用推广工作,切实加强领导,把太阳能推广应用工作纳人政府重要的议事日程,把太阳能推广应用作为重要的一项能源政策,纳入国民经济建设总体规划之中,列入政府的财政预算。
4.2加大投人,加快太阳能应用步伐
太阳能在西部的推广应用,具有重大的政治和社会效应,太阳能的发展仍处初期,产业未形成规模且获益能力低,尚不具备市场竞争的能力,国家应对太阳能应用加大投入,保证资金,组织安排多个不同模式的、连片的光伏电源系统的应用示范及光电站建设。
4.3制定优惠政策,促进产业发展
建议政府和地方制定有关减免税收、价格补贴和奖励相结合的优惠政策,通过给用户以一定比例补贴的办法,鼓励广大无电农牧民采用户用光伏电源系统解决自己的生活用电问题,逐步引导老百姓转变观念,克服等靠要思想,提高自我发展意识,加快解决无电户的步伐,最终促进产品进入市场,逐渐形成地方优势产业。
4.4扩大交流,开展国际合作
多渠道、多形式地开展国际合作,争取更多的国外资金和设备用于推广太阳能,充分利用当今国际开发太阳能的热点,切实抓住西部大开发的良好机遇,主动出击,创造条件,进一步拓宽合作领域,加强联合,促进国内外社团、企业家和个人在西部投资,创办新能源实体。在有条件的地区,本着可持续发展的战略思想,建设兆瓦级太阳能光电站。
4.5制定长远规划,综合开发利用
建议政府制定太阳能推广长远规划,尽快实施太阳能屋顶计划,结合西部地区实际,采取风光互补、小水电与太阳能互补,户用光伏电源系统、太阳能路灯、太阳能与建筑结合等多种形式,独立系统与并网双通,综合开发应用太阳能。在继续抓好国家光明工程、乘风计划、邮电和广播电视村村通计划实施的同时,加快西部区域的科学之光、阿里光电计划的实施。
草场不忘阳光提水的福音,人民渴望光伏发电的思惠。大力推广应用太阳能,提高新能源在能源结构中的比重,是西部地区新世纪和可持续发展的必然选择。逐步改变农牧民由于没有电,日出而作,日落而息,科技文化落后,经济不发达,远离现代物质文明,过着近乎与世隔绝的生活状况,尽快使他们脱离"黑暗",用上电灯,看上电视、听到广播,有利于西部地区的社会稳定、民族团结、经济发展和社会进步,早日缩短与现代社会的距离,步入新时代。
欧洲各国都在开辟通向持久能源的道路,影响他们决策的主要因素是环境保护、创造就业机会和能源供应的安全可靠。可再生能源技术在这些方面都有较大优势。它对环境的影响最小,可替代部分常规能源,增加能源供应的安全性和可靠性;它要求较大的设备投资,创造了更多的就业机会,有助于经济增长。/P
P在欧洲大部分地区,环保的考虑推动着替代能源技术的开发。太阳能被公认为是一种极好的替代能源,它的利用有助于降低二氧化碳的排放和环境保护。很多国家,如丹麦、芬兰、德国和瑞士都认为气候变暖是推动太阳能研究、开发、展示和销售活动的主要因素。/P
P在很多国家中,一个值得注意的倾向是资助转向光伏(PV)技术的开发和商品化。这反映一种较为普遍的观点,即从长期角度来看,光伏投资的回收率将高于主动和被动太阳能热利用技术,比利时就是一个明显的例证。/P
P在很多欧洲国家中,研究开发重点转向太阳能工业和大学,政府特别资助那些本国工业感兴趣和有专长的领域,使其有助于创造就业机会,培育经济增长点。/P
P在很多国家,由于实行小政府政策,太阳能技术的政府鼓励计划就很难实行了。可是有些国家仍然利用鼓励办法来促进太阳能技术发展。在奥地利,联邦、省和某些地方对太阳能装置提供直接的财政资助和鼓励;在芬兰,公司可以申请政府给予新太阳能装置高达总成本35%的补助,而家庭可申请20%的补助。/P
P丹麦政府对安装太阳热水器的补助按照在标准状况下节能的多少来计算。目前补助金按每年节能每千瓦时3克朗(0�52美元)计算,它相当于总安装成本的10-30%。太阳热水器在丹麦相当普及,预计2000年后将不再需要补助了。/P
P其它还有一些补助的方式,如比利时对公共建筑改造的资助,德国和其它国家的减税和折旧补贴等。/P
P尽管受到常规能源低价的影响,在欧洲很多国家中,太阳能装置市场仍然持续增长。虽然太阳能公司的数量减少了,但保留下来的公司却趋向于更强大,更能抵御市场的波动。在某些国家实行的电力公司私有化可能提高他们把太阳能装置推向市场的兴趣。在奥地利等国,自己动手建造集热器的活动促进了主动太阳能装置的发展。/P
P在丹麦有十几家公司生产主动太阳能加热装置,其中两家占有市场的大部分份额。其中Marstal太阳能供热厂(目前世界最大的平板太阳能加热装置生产厂)为Aeroe岛上的Marstal镇1250户5000居民提供区域供热,8000平方米太阳集热器阵列与2100立方米的储热水箱相联,6、7、8月间可100%由太阳能供热,全年能供给全区热需求的12�5%。现在正在计划扩大Marstal供热厂,以便能供应该镇全年大部分热需求。自1987年以来,丹麦每年安装的太阳能加热装置一直在增加。在80年代后期,每年安装的太阳能加热装置只有2300套,1996年已增加到4000套,约40000平方米集热器。丹麦生产的太阳集热器,除少量出口到德国和瑞典外,大部分都在国内销售。/P
P挪威已安装70000多套小型光伏装置,每年安装约5000套。大多数装置是为偏远小镇、山区和沿海地带度假旅社供电用的。典型的装置一般为50-60峰瓦。/P
P芬兰人每年也购买几千套小型(40-100瓦)光伏装置,用于消夏小屋。国家石油公司Neste对进一步开发太阳能发电有着强烈的兴趣,重点为建筑物薄膜光伏组件、蓄电池和成套装置。/P
P此外,有些国家在高性能窗、太阳热水器、储能装置、透明隔热材料、日光照明和与建筑物结合的光伏装置等产品的商业化方面进行努力。/P
P欧洲国家继续看好被动太阳能技术。一些国家集中力量开发利用先进透明装置的节能窗。法国和意大利在开发电致调光的透明装置。法国的研究人员估计,这种技术每年可为南部地区节约高达45%的能源需求。/P
P法国的太阳能设计师们正在用绿色设计原则代替太阳能设计原则,就是要统筹考虑能源性能、安全材料的应用、日光照明、居住者的舒适和健康等因素。这种新的设计方法将被用来设计在Angers 的法国环境保护和能源管理署办公大楼。/P
P人们对和建筑物相结合的太阳能装置和光伏装置兴趣越来越大。丹麦Toftlund的Brundtland中心是一座2000平方米的办公和展览大楼,它有一套先进的日光照明系统,其中包括装在外窗上的改变光线方向的百叶窗,反光天花板,中央阁楼朝南的透光窗,还装有光伏组件。/P
P意大利正在开展使建筑物日光照明最佳化的研究,如改进控制系统,调节自然和人工光源,改进窗和遮光装置的特性和效率,改进人工光源的色效等。/P
P在很多国家中,消费者对太阳热水器的兴趣正在增长,而且在技术和降低成本方面也有较大进展。/P
P德国正在继续其1993年开始的太阳-2000计划,该计划的目的是促进大型建筑物使用的太阳能辅助中央供热系统。按照这个计划将在公共建筑物上安装多达100套大型太阳能辅助中央供热系统,并对它们进行监测。第一套这类系统已快建成。/P
P德国计划开展一项建筑竞赛活动,用来促进与建筑物结合的光伏组件的革新。另一项工作是对2200套安装在住宅屋顶的光伏系统进行监测。/P
P按照欧洲联盟的JOULE计划,法国、西班牙和德国合作正在巴塞罗纳附近建造一座新的Mataro图书馆试验建筑,该建筑将装上与建筑物结合的光伏-热组件。