本文总览:
太阳能光伏逆变器待机状态出现的原因/
? 光伏项目调试步骤前期检测工作 ?? 电气线路检查检查每一回路电气连接是否正确,编号是否无误;检查交直流侧线路是否通畅、相互绝缘情况、有无短路或损伤; ?? 集线箱、并网柜等检查测量一、二次回路的相线间绝缘电阻是否符合要求;检查集线箱、并网柜内部接线是否正确;检查逆变器交流和直流接线是否正确; ?? 接地电阻的测试测量各接地体的接地电阻,箱(柜)体及金属基础等接地可靠。前期检测工作 ?? 直流侧检测 ? 检查每个光伏组件开路电压是否正常(施工中进行); ? 检查集线箱各组串输入输出电压是否正常; ? 检查逆变器输入直流电压是否正常; ? 测量直流正负两侧对地电压是否异常; ?? 交流侧(电网)检测检测并网交流侧电压、频率等电能质量,判断其是否符合并网条件;并网调试操作(一次回路) 1. 合上组串线路上熔断器开关(如果有); 2. 合上集线箱内出线开关; 3. 检查逆变器输入电压,合上逆变器输入开关,接通直流回路,观察逆变器的指示灯状态,如指示为“待机”或“电网失电”且无其它异常指示,则可进入下一步; 4. 合上交流并网侧隔离开关; 5. 如有并网二次控制回路,则将其打到“手动”控制状态; 6. 检查并网反馈端电能基本参数,合上并网柜内输出开关,按下启动控制按钮,接通交流回路; 7. 观察逆变器并网工作状态,如逆变器正常工作,则并网成功,可进入试运行观察期;如不能正常工作,则重新检查线路和逆变器。二次回路调试 1. 检查二次回路是否通电; 2. 检查指示灯显示是否正常; 3. 检查并网电压和电流显示是否正确; 4. 在手动运行状态下,分别按“启动”和“停止”按钮,观察是否正常动作; 5. 切换电压转换开关,显示是否正常; 6. “自动”和“手动”切换是否正常;监控系统调试 1. 检查各传感设备接口、通讯线路连接是否正常; 2. 检查数据采集器和各类传感器的电源线是否接好; 3. 检查太阳辐射仪上罩盖是否揭开; 4. 检查逆变器和负载检测电能表的通讯接线是否正确; 5. 启动监控系统,观察各监测数据是否正常,如某些数据不能获取,重启监控系统和该传感设备。 ? 光伏项目试运行 1. 调试时,首先对一台逆变器进行并网操作; 2. 逐一并上其它逆变器,观察启动与工作状态; 3. 启动所有光伏子系统、控制回路、监控系统,观察整个系统运行情况; 4. 记录系统运行数据(如发电量、日运行时间、故障记录、设备温度、气象数据等); 5. 试运行十五天,作全面数据记录,用作分析和工程资料存档。
可见光占太阳辐射总能量的50%是怎样计算出来的
楼上两段回答或长篇大论,或言简意赅,然而有一点是相通的,那就是离题万里,呵呵。
楼主知道图中的人物是哪位?做什么呢?他是一位著名科学家,叫艾萨克·牛顿,他所作的也是一个经典的实验,三棱镜分解太阳光的实验。当太阳光通过一个玻璃制作的三棱镜,就会按照光谱的排列依次呈现赤橙黄绿青蓝紫七种颜色。只要测定不同颜色区域的光强,就能得到辐射强度的分布,也就能回答楼主的问题了。
上面的图片就是太阳光强度的分布图,即便肉眼也能大致估计,可见光区所占的面积占总面积的50%左右。今日科学的突飞猛进,科学家当然不再会采取牛顿那样简陋的仪器来进行相关的实验。然而简单的科学规律却能在很大程度上被推广,并且在造福于公众日常的生活,这也是自然科学的魅力所在。
这里想简单的提醒两点,其一是分光的仪器,三棱镜固然有相应的功能,但是效果实在是差强人意,因此一般来说采用分辨率更好的光栅代替。其二是测量的地点,大气层对于可见光之外的电磁波,有强烈的吸收,倘若在大气层内测定此图,紫外区和中远红外区的强度会大大衰减,从而导致数据的失真,这也是okimi999网友长篇大论的原因所在。
关于神舟七号...
【基本信息】
全国政协委员、载人航天火箭系统顾问组组长、“神舟”五号火箭总指挥黄春平于“神舟六号”着陆后表示,“神舟七号”发射时间将推迟半年左右,原定2007年的发射计划将拖后到2008年。与“神舟五号”、“神舟六号”不同,“神舟七号”火箭在研制上的关键点是宇航服和气闸舱。因为“神舟七号”将实现太空行走,航天员能否从舱内气压骤然适应真空环境,气闸舱和宇航服扮演了重要角色。
神舟七号于2008年9月25日21点10分04秒988毫秒发射升空。飞船于2008年9月28日17点37分成功着陆于中国内蒙古四子王旗主着陆场。神舟七号飞船共计飞行2天20小时28分钟。
编辑本段【飞船简介】
王兆耀2008年9月24日下午14时30分在酒泉卫星发射中心的“神舟七号”载人航天飞行任务总指挥部新闻发布会上,受“神舟七号”载人航天飞行总指挥部的委托宣布:9月25日21时07分至22时27分直接发射,进行载人航天飞行。届时中国的航天员将首次出舱来进行太空行走。当前,气闸舱等核心技术难关已被攻克,整个飞船已进入综合测试阶段,用于发射神舟七号飞船的长征二号F火箭在2007年12月底前完成全箭总装。据悉,“神舟七号”时的太空行走对航天员的考核要求更加高。由于航天服内的压力比正常情况下低,有可能会使人体组织内的氮气释放,在血管内形成气栓,导致减压病,甚至危及宇航员的生命! 因此航天员在穿好航天服以后,必须在气闸舱内充分吸氧,协助工作的航天员回到内舱(即轨道舱),关闭内舱门,然后气闸舱开始泄压到真空,与飞船外的真空状态保持一致,此时航天员可以出舱活动。而完成舱外任务回到舱内时,还要对航天服进行一定的减压,再对气闸舱充气。
“航天员出舱活动是一项高难度、高风险的活动。”专家介绍,“神舟七号”时的太空行走要求航天员必须在地面做充分的试验和训练,其地面训练一般在一个对比重有一定要求的中性水池里进行。这种水池通常建在大型的试验房里面,把航天器放在水池中,利用水的浮力模拟太空的失重现象,然后航天员在水池里面进行出入舱和舱外操作训练。
中国载人航天工程副总指挥张庆伟表示,未来的神舟七号飞船,不会是神舟六号的简单重复,突破许多关键技术。发射神舟七号飞船的仍然是长征二号F型运载火箭,此前这种火箭已经成功地将六艘神舟飞船送入太空,具有成熟的技术基础。目前新一枚运载火箭元器件的采购与生产已经展开,火箭总设计师荆木春说,这一次他们将采用质量更高的元器件。针对前几发火箭的飞行情况,科研人员还将对这枚火箭进行局部改进,来进一步提高火箭的可靠性。此外,他们还考虑在火箭上增加一些摄像头。
从神舟七号开始,我国进入载人航天二期工程。在这一阶段里,将陆续实现航天员出舱行走、空间交会对接等科学目标。整个二期工程的所有发射任务全部由长二F火箭担任。
【细节信息】
航天员像开飞机一样驾驶“神七”
中国载人飞船系统总设计师张柏楠介绍说,“神六”两名航天员13日先后进行开关舱门、穿脱压力服、穿舱、抽取冷凝水四大项“在轨干扰力”实验,结果表明航天员较大幅度动作对飞船姿态影响微小,飞船姿态保持良好。飞行在太空中的航天员费俊龙获知结果后,第二天就在飞船上连续做了4个前滚翻。张柏楠说,这是航天员自己在游戏,不是事先安排的。此次空间飞行结果表明,从刚升空到准备返回,费俊龙和聂海胜任何时间都能正确发出指令、准确控制各种设备,舱门开关等动作较大的操作也能一次成功。张柏楠介绍说,有了这次实验的基础,“神七”将安排航天员“像驾驶飞机一样驾驶飞船”!
“神七”航天员准备展开太空行走
戚发轫院士认为,人上天不是旅游,是完成对空间环境的研究、开发、利用。以前杨利伟只是第一步去试一试,要想完成这个任务必须多人多天,比方说要去组装一个空间站或者修理一个卫星,人就得出舱,出舱起码得两个人。以后要去空间站坐运输工具去,要对空间站进行对接,打开门以后把里面的人接出来。从国外来讲,他们花了很多次的试验来做这个事情,现在按照我们的计划,“神七”希望人能够出舱,老百姓的话叫空间行走。“当然出了舱还有离舱多远?也可以离得近一点儿,也可以离得远一点儿。”戚发轫院士说,下一步我国就要解决交会对接,交会对接起码得有3个人。所以我们飞船要有这个能力:3个人在天上待7天,上去的时候可以带300公斤的东西,回来的时候可以带一百公斤的东西。假如这次很成功,就不需要再试两人多天,那我们下次就出舱了。戚发轫院士认为,将要出舱的“神七”必须在神舟六号的基础上解决两个比较大的问题。现在航天员有一个密封舱,在这个舱里穿航天服。离开这个舱就没有了空气,所以航天服本身就必须能供给氧气。第二是没有温度控制时,航天服能保证他正常的温度,所以这个航天服就相当于一个小型的密封舱,这方面挺复杂的。更高级的航天服还可以装上发动机,一点火就走了,相当于一个小飞船一样,要出舱得具备这几个条件。戚发轫院士说,将来我们船上要有一个气闸舱,人穿好航天服进去,把门关上,把外面的门打开出去,假如一打开门气就放光了,所以有一个气闸舱。“我只是说两个主要的,作为航天员有一个舱外的航天服,作为我们的飞船来讲,必须得有一个气闸舱,要保证原来的舱里一定有一个大气压。”
编辑本段【航天实验】
中国科学院披露载人航天实验内容
中国科学院有关负责人表示,载人飞船工程应用系统的主要任务是开展空间对地观测、空间科学及技术实验。我国载人航天工程(第一阶段)应用系统的目标是大力推进和发 展我国空间科学与空间应用技术,为国家经济建设和社会发展做出有重要价值的贡献,同时为今后有人参与的空间科学与技术实验打下基矗。
其中,“对地观测任务”是以与国际同步发展先进空间遥感器及开拓地球系统科学研究为目的,确定了中分辨率成像光谱仪器、多模态微波遥感器(包括微波高度计、辐射计和散射计)、地球环境监测和遥感应用研究等在轨实验和应用任务。地球环境监测包括太阳常数监测、太阳和地球紫外辐射监测以及地球辐射收支探测。遥感器应用研究为我国遥感应用技术的发展奠定基础;开展成像光谱技术和微波遥感技术在海洋、陆地和大气方面的应用研究和应用示范。
“空间科学研究”安排了空间生命科学、微重力科学(包括空间材料科学项目,微重力流体物理研究项目),还有空间天文项目、空间环境预报和监测任务,目标是全面提高我国空间科学水平。“空间生命科学和生物技术”研制了多种空间实验设备,开展空间生物学效应研究、空间蛋白质结晶、空间细胞培养、空间细胞电融合以及空间蛋白质和生物大分子分离纯化等研究;“空间材料科学研究”研制多工位晶体生长炉和晶体生长观测装置,开展二元和三元半导体光电子材料、透明氧化物晶体、金属和合金等材料研究和空间生长,研究空间晶体生长动力学;“空间环境预报和监测”研究可以建立空间环境预报中心,发布长期、中期、短期空间环境预报和警报,进行效应预测,保障航天员、载人航天器和空间设备安全。
编辑本段【实施计划】
未来几年内我国的航天技术发展实行“三步走”计划
中国载人航天工程办公室工程总体室主任王忠贵向记者揭示了我国航天技术发展在未来几年内的“三步走”计划:“神舟七号”飞船将于2008年升空,它肩负的使命是实现航天员太空行走;2009年至2011年之间,“神舟八号”飞船将带着一项更重要的任务升空,在太空中完成交会对接;而航天技术发展的第三步就是建立空间站。
编辑本段【系列消息】
“神七”费用低于“神六”
“神六”的成功,很多人都关注地问,它到底花了多少钱?对此,王庆仁透露说,“‘神六’我们的总花费是9亿元人民币,其中,‘神六’宇航服造价就3000万。”王庆仁表示,中国绝对是用有限的投资来取得更好的效果的,“所以摆在中国航天人面前的一个比较重要的任务,就是用有限的经费取得世界上比较公认的成果。”
对于“神七”费用的问题,王庆仁向记者透露:‘神七’的花费应该少于‘神六’。因为我们‘神舟’系列航天技术的主体研制工作已经完成,所以‘神七’是在已有基础上的研制,花销会相应少很多。”
就在一个月前,首部反映载人航天工程的电视剧《神舟》在全国热播,但是看完这部电视剧的专家们却是有点无奈,王庆仁说,“我们几个同事是在一起看的,看完之后我们都笑了,因为里面的错误真是让我们很无奈,我们只有苦笑。举个最简单的错误吧,就像里面的一个女主角,一直把‘航空’和‘航天’的概念混在一起说,前者指的是飞机,而后者才应该是我们说的‘航空航天飞船’,也就是现在大众所说的‘神六’之类,从这里我们看到其实他们对航空事业的不理解,而很多时候我觉得现在的中国人常常做事情一窝蜂,什么火追什么,很多人看《神舟》电视剧也像追星一样,但很快就会冷下来,这也是一个舆论的引导问题,我还是希望大家可以冷静地看待我们的航空航天事业。”
编辑本段【发射条件】
无降水、地面风速小于每秒8米、水平能见度大于20公里;
发射前8小时至发射后1小时,场区30公里至40公里范围内无雷电活动;
船箭发射所经过空域3公里至18公里高空最大风速小于每秒70米,此外发射前后9小时不能有雷电。
“神七”首选发射时间为2008年9月25日。中国载人航天火箭系统顾问组组长黄春平11日对有关媒体表示,“神舟七号”载人飞船首选的发射时间是2008年9月25日晚上9时10分左右。
“神五”、“神六”和 “嫦娥一号”的发射时间均在10月中下旬,而“神舟七号”的发射将提前到本月底升空。有关专家透露,9月和10月均有较适合发射窗口,但因“神七”将执行太空行走任务,9月底升空时的太阳夹角更适合太空人出舱活动,能令飞船在最短时间内见到太阳,保证太空人出舱作业时有阳光。
发射载人航天的最佳气象条件主要包括:无降水、地面风速小于每秒8米、水平能见度大于20公里;发射前8小时至发射后1小时,场区30公里至40公里范围内无雷电活动;船箭发射所经过空域3公里至18公里高空最大风速小于每秒70米,此外发射前后9小时不能有雷电。
黄春平表示,能否如期发射,主要是看当时的发射场天气等情况。小雨和气温一般都不会影响飞船的正常发射,但大风则可能导致飞船推迟发射,因为风速超过火箭的承受能力后,将有可能改变其飞行方向。
黄春平透露,航天员太空漫步就会在飞船进入轨道运行,环绕地球超过五圈之后进行。
“神五”、“神六”升空入轨后,均无法拍摄到飞船在太空中的外景照片,当时的电视直播也仅限于舱内。而“神七”释放伴飞小卫星后,将能弥补这一缺憾。据专家介绍,小卫星可近距离环绕,伴飞,因小卫星安装有CCD立体相机,可提供飞船在轨飞行时的首张三维立体外景照片和太空人出舱活动的即时画面。
中国空间技术研究院研究员庞之浩表示,在国际上,不管是白天发射还是晚上发射,两种情况都存在。
编辑本段【“神七”航天员】
神舟七号太空船已于9月25号发射升空,进行中国航天首次太空漫步的是曾经2次入选神舟计划的航天员翟志刚。
神舟七号太空船3名正选太空人包括入选过神五及神六计划的翟志刚、以及2名也曾经入选过神六的队友刘伯明与景海鹏。
当中执行出舱任务的是翟志刚,第一备选是刘伯明。42岁的翟志刚是黑龙江齐齐哈尔市龙乡县人,1985年加入空军,有超过1000小时的安全飞行记录。
神舟七号在九月25号晚上9点到10点钟升空。而26、27号两天的下午到傍晚是最适合出舱的时间,到时2名航天员会进入轨道舱。由于太空衣非常重,造价超过1亿元人民币,要另外一个人帮助才可以穿上。这一太空漫步将大约进行20分钟。航天员身上将会连接着2条生命线。太空衣是以俄式太空衣为基础研发的,提供氧气、压力、电源和通讯等设备,出舱以后航天员身边还会放一个伴飞小卫星,上面有摄像镜头,全程直播太空漫步。如果这项技术成功,将会是中国航天科技当中一个突破。而升空后大约68小时,会完成所有实验。28号下午飞船将返回地球。
神舟七号即将发射升空,目前已经完成最后一次火箭和遥测系统检测。而酒泉卫星发射中心内外全面提升了警戒级别,连同附近的军用机场也加强了保安,雷达以及各种侦测仪器已经投入运作,做地面、上空等多方面的部署。
雷达不停地侦测,天空、地面全面加强布防,这个军用机场距酒泉卫星发射中心约100公里,是前往发射中心的必经之路,也是发射中心外围的另一层保护网,确保神七发射任务准备工作做到万无一失。上两次神舟五号及神舟六号升空时,国家领导人都由北京亲临酒泉发射中心,观看发射过程,他们都是先抵达这个军用机场,再转车到发射中心。由发射中心到军用机场范围已经全部列为了军事禁区,航天路面全面封锁,这一带也禁止任何人停留,更加严禁拍摄。神五、神六及神七都是在酒泉卫星发射中心发射,但保安明显一次比一次加强。通往航天城的检查站由以往只有一两个增加到三四个,每天检查站都有武警和解放军戒备,所有由航天路前往发射中心的车辆都必须有通行证才能放行,司机和乘客全都要登记证件。
最终,翟志刚、刘伯明、景海鹏飞天,翟志刚有望太空漫步,第一备选是刘伯明。
失重对航天员生活的影响
人长期生活在地面有重力的环境里,一旦进入失重环境,就会感到生活习惯不适应。为此,对航天员的生活须采取各种措施:为航天员设计紧身服装,因为肥大的衣服会漂浮起来;对座舱中的物品加以固定,避免自由漂浮;食物块破碎或表面掉下的粒屑,会飞扬起来,钻进航天员的眼睛、鼻子,甚至吸入气管,引起生命危险,因此航天食品要做成块状,一口一块;饮水时要用管子通入口中,防止水珠进入气管;洗漱溅水,须用吸水器吸干,以防止水珠聚积在空中,造成危害;航天员睡觉须用带子或睡袋把自己捆住;在失重条件下行走时,航天员须穿用带钩的鞋子,能挂住网格状的地板(天花板)。
失重对人体的生理影响
人长期在地面重力场内生活,地球重力吸引血液向下流动。在失重环境中,血液重新分配,下肢血量减小,头部血量增多,航天员的收缩压一般比飞行前升高2000~2666帕(15~20毫米汞柱),平均动脉压升高1333~1600帕(10~12毫米汞柱),静脉压也上升,舒张压则下降。失重使流体静压梯度消失,中心静脉压和心房压力增加,刺激这些部位的容积感受器,反射性地引起排尿量增加和水分及血浆量减少(约10%)。尿中排出的钠、钾离子增加。在失重环境中,人体骨骼受力减少,时间一久,肌肉萎缩,骨骼也会变得松脆,特别是失重会引起骨骼内钙、磷盐的丧失,使航天员返回地面后变得软弱无力。失重还会引起红血球减少(8%~17%),白血球增加,T淋巴细胞减少,免疫能力减退。在失重环境中,大多数航天员还会发生前庭-植物神经反应,引起航天运动病和空间定向障碍,出现恶心、呕吐、面色苍白、出、晕眩,影响工作能力。这种症状常在航天的头一周内发生,随后症状消失。
编辑本段【总指挥部成员】
中央军委委员、总装备部部长、载人航天工程总指挥、神舟七号任务总指挥部总指挥长常万全,总装备部政委、神舟七号任务总指挥部副总指挥长迟万春,总装备部副部长、载人航天工程副总指挥、神舟七号任务总指挥部副总指挥长张建启,载人航天工程副总指挥、神舟七号任务总指挥部副总指挥长陈求发,载人航天工程副总指挥、神舟七号任务总指挥部副总指挥长阴和俊,载人航天工程副总指挥、神舟七号任务总指挥部副总指挥长马兴瑞,载人航天工程副总指挥、神舟七号任务总指挥部副总指挥长王志刚。
编辑本段【7大系统】
《1》航天员系统
航天员是怎样炼成的?
驾车在北京八达岭高速路北安河出口向西一拐,进入北清路,行驶约10分钟后,可以看到路左侧一个银色的金属标志——“中国北京航天城”。在这个名叫唐家岭的小村庄里,占地约3500亩的航天城戒备森严。中国航天员科研训练中心就设在这里。
神七航天员翟志刚、景海鹏、刘伯明中国航天员科研训练中心的前身是创立于1968年4月1日的宇宙医学及工程研究所,2005年9月30日更名为中国航天员科研训练中心,成为继俄罗斯加加林训练中心、美国休斯顿航天中心之后,世界上第三个航天员科研训练中心,被誉为“中国航天员成长的摇篮”。
据称,“神七”是在总结“神五”、“神六”航天员选拔经验的基础上,根据每名航天员在乘组中的不同分工,依据个人特点进行的科学选择,完全遵循“科学、公正、客观、合理”的原则。航天专家介绍说,“神七”航天员是经过5级筛选才脱颖而出的,可谓“两百里挑一”。
神舟七号太空船3名正选太空人包括入选过神五及神六计划的翟志刚、以及2名也曾经入选过神六的队友刘伯明与景海鹏。当中最有可能执行出舱任务的是翟志刚,第一备选是刘伯明。42岁的翟志刚是黑龙江齐齐哈尔市龙江县人,1985年加入空军,有超过1000小时的安全飞行纪录。
飞天号航天服中国造
神舟七号准备了两套航天服,一套是俄罗斯海鹰“飞天”舱外航天服号航天服,一套是中国自主研究的飞天号航天服。飞天号航天服接口各方面都是按照中国的模式来做的。飞天号是我们的自主知识产权,以后航天员出舱可能依赖我们自主的航天服,而不是俄罗斯的航天服。这次外出行走的航天服将是我们的航天服。
《2》飞船应用系统
飞船应用系统
飞船应用系统是一个实用性的系统,它与人们的生活、环境息息相关。飞船应用系统的主要任务是利用载人飞船的空间实验支持能力,开展对地观测、环境监测,进行材料科学、生命科学、空间天文、流体科学等实验,安装有多项任务的上百种有效载荷和应用设备,飞船试验阶段的应用属试验性质,实验内容非常广泛,研究成果将广泛用于医药发展、食品保健、防治疑难病症以及工业、农业等各行业之中。载人飞船系统采用由轨道舱、返回舱和推进舱组成的三舱、两对太阳电池帆板构型和升力控制返回、圆顶降落伞回收方案。其中轨道舱位于飞船的前部,装有船上各分系统为飞船自主飞行和留轨飞行工作所需的设备及有效载荷。
飞船应用系统成功为气象预测服务
从1992年以来,应用系统完成了近200台全新有效载荷的研制,共200多台次有效载荷设备分别参加了“神舟”一号至“神舟”五号飞船的发射和在轨试验,取得了圆满成功;地面应用中心的接收、预处理、监控管理等系统全部无故障运行。建成了系统集成测试平台、有效载荷应用中心和空间环境预报中心,开展了67个课题的科学研究,创造了100多项具有自主知识产权的新技术、新方法,取得了丰硕的科技成果。
在对地观测方面,应用系统为我国成功地研制出中分辨率成像光谱仪、多模态微波遥感器、地球辐射收支仪、太阳紫外光谱监视器、太阳常数监测器等一批先进空间遥感器。其中,“神舟”三号中分辨率成像光谱仪,是继美国1999年发射MODIS之后进入空间的第二台中分辨率成像光谱仪,图像质量清晰,光谱分辨率好,应用部门已利用这些成果开展试验性应用研究,对其评价认为:“这标志着我国可见光和近红外遥感上了一个新的台阶,我国可见光和近红外遥感技术已跨入美国和欧共体等国际上先进行列”;“神舟”四号多模态微波遥感器,在轨运行取得大量具有应用价值的科学数据,一举试验成功微波辐射计、微波高度计和微波散射计,是我国空间遥感技术的重要突破;配合微波高度计的飞船精密定轨,达到我国低轨道空间飞行器全球定轨的最高精度;卷云探测仪具有探测大面积卷云和薄卷云的能力,结果超出预期,受到用户的高度评价;为我国首次实现对全球环境重要参数绝对量的探测,对太阳和地—气紫外、太阳常数和地球辐射收支状态等进行了系统监测,观测成果达到国际水平。
在空间生命及微重力科学领域,研制了一批先进的实验装置,进行了数十项空间实验。其中微重力液滴热毛细迁移的空间实验和理论研究,达到国际领先水平;空间细胞培养、细胞电融合、蛋白质结晶、空间生物效应和空间连续自由流电泳,以及在空间微重力条件下进行的金属合金、氧化物晶体、半导体光电子材料的生长实验,也取得了丰硕的科学成果,部分已经达到国际先进水平。
在空间天文方面,在国内率先对宇宙及太阳的高能暴发现象进行空间观测,取得了γ射线暴探测研究的重要成果。载人航天工程一期空间科学计划的成功,使我国掌握了空间科学实验的重要关键技术,空间科学实验和探测水平跨上了一个新台阶。作为载人航天安全保障而安排的空间环境监测及预报研究,获取了大量有价值的飞船轨道空间环境参数,准确预报了对飞船发射有危害的流星暴事件和其他灾害性空间环境状态,保障了飞船和航天员的安全,建立了空间环境预报中心,有力地推动了我国空间环境预报保障体系的建设和发展,同时促进了相关学科的研究水平。
《3》载人飞船系统
载人飞船构造:
1,轨道舱呈圆桶形状,是航天员工作、生活和休息的地方。轨道舱调整了舱内布局设计以便安装应用系统设备及航天员食品和饮用水装置。轨道舱的后端底部设有舱门,航天员通过这个舱门可以进入返回舱。轨道舱外部两侧装有两个像鸟儿翅膀一样的太阳电池翼,轨道舱所需要的电能就是由这两个电池翼提供的。
2,返回舱是载人飞船唯一返回地球的舱段,飞船起飞、上升到入轨及返回着陆时,航天员都在返回舱内。神舟六号的返回舱形状像钟,其舱门与轨道舱相连,航天员通过这个舱门,可以进入轨道舱。返回舱是飞船的指挥控制中心,舱内安装了航天员的座椅。飞船在起飞、上升和返回地面时,航天员躺在座椅上的。返回舱内还安装了飞行中需要航天员监视和操作的仪器设备,航天员通过这些仪表可以随时判断、了解飞船的工作情况,还可以在必要时人工干预飞船的系统和设备的工作。
3,推进舱形状也是圆柱形的,舱内安装推进系统发动机和推进剂,其使命是为飞船提供姿态高速和进行轨道维持所需的动力,飞船电源、环境控制和通信等系统的一部分设备也安装在这里。推进舱外部两侧也安装了两个太阳电池翼,为飞船提供所需的电能。
载人飞船的轨道舱和返回舱都是密封的舱段,舱内与外界完全隔绝,内部安装的环境和生命保障系统,将为航天员提供一个与地球环境一样的舒适生活环境。另外,还安装了供着陆用的主、备两具降落伞。返回舱侧壁上开设了两个圆形窗口,一个用于航天员观察窗外的情景,另一个供航天员操作光学瞄准镜观察地面驾驶飞船。
《4》运载火箭系统
神舟七号将使用长征2F火箭进入太空。目前火箭已经抵达发射基地。专家一致认为,火箭功能及性能满足工程总体和飞行任务要求;产品技术状态受控,研制质量良好,出现的质量问题已经全部归零或有不影响飞行任务的明确结论;完成了规定的可靠性安全性项目试验,各项准备工作满足载人航天飞行产品出厂放行准则的要求。
长征2F火箭整装待发
放射性测量
20世纪70年代初,我国开始用天然放射性测量寻找地下水源,至今已取得了良好的效果和进展。该方法的优点为设备轻便、操作简单、探测速度快、成果反映直观,是寻找地下水源的一种简单、经济和有效的方法。
利用放射性测量主要是寻找与断裂、裂隙有关的基岩地下水。在断裂带、破碎带和裂隙发育带中,地下水的迁移、搬运不断地对周围岩石中的放射性元素进行冲刷、析出、沉淀、运移等,使作为水通道的断层破碎带与周围岩石之间存在着放射性元素含量的相对富集或相对贫化的差异,从而产生了放射性强度的差异。因此,在与断裂、裂隙构造部位相应的地表处,通常存在放射性异常。当放射性元素正向迁移作用(即氧化、溶解、扩散、射气等使各种放射性元素从岩石进入水中的作用)大于反向迁移作用(即在地下水运动过程中,由于构造环境、地球物理和地球化学条件的改变,造成天然放射性元素自水中析出、沉淀,被粘土、有机质等颗粒所吸附的作用)时,断裂破碎带上的放射性强度低于围岩,即所谓放射性元素相对贫化,此时则出现天然放射性强度的“负异常”,反之,当反向迁移作用大于正向迁移作用时,断裂破碎带上的放射性强度高于围岩,即放射性元素相对富集,则出现天然放射性强度的“正异常”。无论“正”或“负”异常都是判断是否有含地下水构造存在的标志[10,11],。
利用天然射线测量法找水,目前国内采用的方法有γ测量、静电α卡法、α径迹测量、210Po测量等。不同方法可探测不同的核素异常。一般说来,α放射性测量比y放射性测量更为灵敏,探测深度更大。尤其是α径迹测量和210Po测量,其干扰因素少,有利于克服地形、地物和气候变化等影响。210Po测量比α径迹测量显示的异常范围大、异常边界不很清晰,但其工作周期短、取样分析比较方便。所以,在利用天然放射性寻找地下水源时,若覆盖层较薄、工作范围较大,则使用快速的y测量,若覆盖层厚度大、工作范围小,则采用α径迹测量或210Po测量。
1.y测量
γ测量是直接测定迁移至地表的放射性元素(包括Rn的衰变物)所发出的γ射线。一般用高精度辐射仪如FD-71、FD-31、T FS-1和T FS·2型辐射仪,徒步沿剖面测量。
γ测量是一种简便的找水方法,具有仪器轻便、工作方法简单、效率高、成本低和直观的优点。但由于含水构造引起的放射性异常强度一般只是正常场的1.1~1.4倍,要可靠地确定异常性质,测量时要求辐射仪的灵敏度应大于3×10-6eU([当量铀e(U)含量])
1×10-6eU=0.619γ 1γ=71.767×10-15A/kg=71.767 fA/kg(飞安每千克)。
,观测读数的相对标准偏差小于3%,测量探头应有较低的本底读数。
图3-1-33 山东平阴γ曲线图
(据朱焕祖,1986)
1—表土;2—页岩;3—石灰岩
γ测量探测深度小,一般只有几十厘米至几米,最深不超过15m。当测区的地下水较丰富、埋藏较深、流速较大、表层又缺少土时,不利于放射性元素富集,在其上不易发现放射性异常。在开展工作时,要注意γ测量的方法有效性,不可盲目使用。
图3-1-33是山东平阴一条剖面上γ测量的结果。地表为厚度约10m的粘性土,基岩为页岩和灰岩。两台辐射仪观测的γ曲线上均有明显的低值异常,极小值比正常值低25%左右。经钻探验证,在50号点附近石灰岩破碎、裂隙发育,钻孔内静水位为8m,抽水试验时地下水位降14m,涌水量达1900~2400t/d。低值γ异常为含水构造裂隙的反映[11]。
2.α径迹测量
所谓径迹是指裂变碎片在绝缘固体物质中产生的辐射损伤。当利用塑料胶片在土壤层浅孔中接收Rn、Th及其子体所产生的α线辐射时,a粒子就会在胶片上产生辐射损伤。因肉眼看不到,故又称为潜伏径迹,经化学方法腐蚀后,蚀刻出来的辐射损伤叫做径迹。在普通光学显微镜下,径迹呈圆锥形的坑洞,称为蚀坑。蚀坑在镜下透视平面上表现为圆形或椭圆形带黑边的亮点。根据胶片上出现的径迹(亮点)密度,可估计辐射到胶片上的α射线的强度。
α径迹测量是利用径迹现象来找水的一种方法,是利用塑料胶片在土壤层浅孔中接收Rn、Th及其子体产生的α射线的辐射,然后用一定倍数的显微镜观测经化学腐蚀方法处理的塑料胶片上的径迹密度。在富水裂隙带上部的土壤层中可形成高于背景值的径迹密度异常,根据径迹密度异常可确定富水裂隙带,从而达到寻找基岩裂隙水的目的。
α径迹测量简单易行,比γ测量有更高的灵敏度。由于Rn的半衰期为3.825天,能扩散百米之外,所以,它通常可探测几十米。
α径迹测量所需设备如下:
1)探测装置:为塑料胶片和探杯。塑料胶片可选用醋酸纤维胶片或硝酸纤维胶片,探杯用直径8cm、高9cm的陶瓷茶杯或塑料探杯。
2)蚀刻装置:包括恒温水浴锅、温度计、台杯、烧杯、量杯、化学蚀刻架、化学试剂(KO H、NaOH、KMnO4和HCl)等。
3)观测装置:为普通生物显微镜,并附有统计径迹密度用的刻度尺。
野外工作时,首先将塑料胶片剪成1.5cm×3.5cm的长方形,并在两端用针尖刻记编号,编号要统一刻在胶片的同一面。然后用透明胶带粘住胶片两端,将其粘着固定在探杯内离杯口4cm的深处,使胶片平悬于探杯中央(图3-1-34)。
图3-1-34 探测器安装过程示意图
(据南京大学地质系基岩裂隙水探测方法研究小组,1983)
(a)胶片两端刻记编号(;b)用透明胶带纸粘住胶片两端;(c)胶带纸的另一端粘着于杯壁使胶片平悬于探杯中央;(d)胶片离杯口距离4cm
1—胶片;2—透明胶带纸;3—探杯
然后,在选择的剖面上,按一定的点距,一般为3~5m,挖35~45cm深的浅孔,浅孔要避开人工填土、沟边、陡坎边。将编好号的探杯口朝下放入浅孔,盖上塑料布,再压土封好。
由于Rn的半衰期为3.825天,在埋探杯后一个月左右,Rn及其子体可达到平衡,因此,埋杯时间一般为15~30天。为了保证测量条件的一致,在同一测区必须用同一埋杯时间。
α径迹测量结果以α径迹密度曲线剖面表示(图3-1-35)。径迹密度单位可用胶片上每0.26mm2内的径迹数目(j)或每平方毫米内的径迹数目(j/mm2)表示。一般认为,径迹密度异常值高于背景值四倍以上时,反映构造断裂的效果较好。
图3-1-35 α径迹密度曲线剖面
(据南京大学地质系基岩裂隙水探测方法研究小组,1983)
依断裂规模、性质的不同,在α径迹密度曲线上呈现不同的异常特征。异常类型可有下述几种(图3-1-36)。
1)单峰状异常:以一点或相邻两点形成的异常为特征,常反映单一的直立的断裂带,其两侧次级断裂、裂隙、破碎不发育(图3-1-36(a)。
图3-1-36 常见的几种径迹密度曲线异常类型示意图
(据南京大学地质系基岩裂隙水探测方法研究小组,1983)
(a)单峰状异常;(b)双峰状异常;(c)多峰状异常;(d)对称异常
2)双峰状异常:其特征是以一点或相邻两点形成主峰异常,在其一侧出现强度上次于主峰异常的次峰异常(,图3-1-36(b)。主峰异常为主断裂带的反映,次峰异常为主断裂上盘一侧的次级裂隙或破碎的反映。
3)多峰状异常:其特征是曲线呈锯齿状,异常有一定宽度,反映了宽度较大的断裂带或较宽的节理密集破碎带(图3-1-36(c)。
4)对称异常:其特征是在低缓异常背景上叠加了单峰状异常,主峰异常反映了直立的主断裂,两侧低缓异常反映了次级断裂带或破碎带(图3-1-36(d)。
除上述类型外,还常见以下一些不规则形态的曲线(图3-1-37)。
图3-1-37 几种不规则的曲线形态
(据南京大学地质系基岩裂隙水探测方法研究小组,1983)
(a)风化裂隙所反映的曲线形态;(b)不同岩层界面两侧反映的曲线形态;(c)岩溶、裂隙、洞穴上的曲线形态
3.210Po测量
210Po测量是通过取土壤样品,用化学处理的办法将样品中放射性元素210Po置换到铜、镍等金属片上,再用α辐射仪测量析沉在金属片上的210Po所辐射的a射线强度。
由于新构造断裂上方的土壤层中210Po的含量明显地比周围的含量高,因此,用210Po测量测得的α射线强度异常可推断新构造断裂的位置,从而达到找水的目的。
210Po测量的野外工作主要是采样。采样点距为3~5m,采样深度35~45cm,样品重量20~30g。210Po测量可与α径迹测量配合,在α径迹测量的土壤层浅孔底取样。
210Po测量的室内工作包括样品的化学处理和金属片上的α射线强度测定。其步骤如下。
1)称量8~10g样品放入100mL的烧杯中;
2)注入2.5N的H Cl 130mL,浸泡数小时;
3)将直径为19cm的铜片放入溶液中,振荡3~4小时;
4)取出铜片,用清水冲洗干净,晾干;
5)用低本底α辐射仪(如EJ-13、FD-3005型等)测量铜片上210Po的a射线强度,其单位以计数率(脉冲/小时)表示
计数率是一种相对读数记录单位,随仪器不同而不同,需经过标准源进行标定后,才能换算成放射性活度单位。
。
210Po测量结果以剖面曲线图表示。曲线上高于背景值2~3倍以上的α射线强度定为异常。
图3-1-38是无锡某地用210Po测量寻找新构造裂隙水的例子。测区内出露地层为上志留统茅山组砂岩、石英砂岩。区内裂隙、节理发育,断裂构造有N W 290°和N E10°两组。在预计布井的范围内,经地质观测认为,N E10°一组裂隙为更新的一组含水构造。为此,布置了近东西向的α径迹测量剖面。测量结果见图3-1-38b。由图可看出,在3号点和12号点处出现明显的异常,经12号点处的钻探验证,异常为含水新构造裂隙带引起的。
图3-1-38 无锡某地地质、物探综合剖面
(据石玉春,1982)
(a)α射线强度曲线(;b)α径迹密度曲线1—砂岩;2—构造裂隙
为了验证210Po测量探测新构造裂隙水的效果,在α径迹剖面上采集土壤样品,测定210Po的α射线强度(图3-1-38)。结果表明,在α径迹密度异常位置上同样出现a射线强度异常,而且比α径迹密度异常更明显[13]。
太阳指数和太阳黑子数有什么关系
在地球大气外距离太阳一个天文单位的地方,垂直于太阳光束方向的单位面积上在单位时间内接收到的所有波长的太阳总辐射能量。通常用符号S 来表示,单位为卡/(厘米·分钟),或瓦/米。它随波长的分布称为“大气外太阳分光辐照”,其单位常用瓦/(厘米·微米)表示。太阳辐射的能量主要集中于可见光波段,因此太阳常数涉及的波段并不太宽,0.2~10.0微米波段的辐射已占太阳常数的 99.9%,其中 0.3~3.0微米就占97%左右。精确测定太阳常数和大气外太阳分光辐照,不仅对于研究太阳和地球大气结构十分重要,而且还可应用于气象、航天、太阳能利用和环境科学等许多领域。太阳常数约为1.97卡/(厘米·分钟)。
精确测定太阳常数比较困难,原因是必须考虑地球大气对太阳辐射的吸收效应。目前所用的测量方法基本上有以下两种。
地面分光和总辐射测量法 在地面(一般都在大气稀薄的高山上)用太阳分光辐射仪测定太阳在不同高度(不同大气质量)时辐射强度随波长的相对分布(称为相对分光辐照),观测达到的波段范围大约为0.295~2.5微米。与此同时,用一架绝对能量标度的太阳总辐射仪测定同样波段的总辐射能量,作为上述相对分布的绝对能量定标。然后,对每一波长按照指数消光定律外推得到地球大气外的太阳分光辐照,再对波长积分就得到大气外0.295~2.5微米波段的太阳辐射能量(必须蟹止獠饬渴且蛭甘舛芍皇视糜诘ド?。至于波长短于0.295微米和大于2.5微米的太阳辐射,则因地球大气中臭氧、水汽和其他大气分子的强烈吸收,不能到达地面,只能利用高空探测或理论推算得到。把所有波长的能量加在一起,并作日地距离改正后,即得到太阳常数。也可以用飞机(约在11~13公里高度)进行太阳分光和总辐射测量,要作的大气吸收改正量比高山测量为小,但也存在一些问题,如需作飞机窗口改正,观测的时间太短和大气质量的变化范围太小,因而具有随机性和不利于外推等等。
高空总辐射测量法 在几十公里以上的高空直接测量太阳的总辐射来获得太阳常数,例如,在高空火箭(60公里以上高度)、人造卫星和宇宙飞船上测量太阳辐射,便无需作大气消光改正,测得的结果作日地距离改正后即为太阳常数。如果用气球在20~40公里的高空测量辐射,仍然需要作很小的大气消光改正。其中的波长短于0.295微米的辐射因被高度约为 12~50公里的大气臭氧层所吸收,仍然观测不到,它们的辐射能量也只能采用火箭观测结果或者进行理论推算。
太阳常数的观测已有七十多年历史。六十年代以前多用经典的地面测量方法,美国史密森天文台的艾博特等人从二十世纪初到五十年代曾经进行长期和大量的测量。六十年代以后,由于高空技术的发展,更多地采用高空测量。在太阳常数的测量和推算中,由于所用的仪器设备、观测步骤、观测点的大气条件和大气消光改正的方法等各不相同,同时在绝对标度校准和不同标度系统换算上也往往存在误差,因此得到的最终结果很不一致。例如,1954年F.S.约翰逊主要根据五十年代以前的地面观测结果整理,得到S =2.00卡/(厘米·分钟),这一数值在五十年代和六十年代曾被广泛引用;1971年拉布斯和内克尔综合六十年代地面和高空测量结果,得到S=1.95卡/(厘米·分钟);1977年弗罗利希详细研究了1966~1976年间的高空观测结果和进行标度换算之后,得到了最可几值为1.97卡/(厘米·分钟)。
太阳常数本身是否变化的问题,至今仍未研究清楚。太阳表面活动在辐射方面引起的瞬间变化(例如太阳耀斑引起的辐射增强)至少比太阳常数小4个数量级,完全可以忽略,因此太阳常数的变化是指太阳总辐射能量的平稳缓慢变化。五十年代以前史密森天文台在长达半个世纪所作的测量表明,其变化在观测精度(±1%)之内。1969年发射的行星际探测器“水手”6号和7号以及1975年发射的人造卫星“雨云”6号的观测结果,分别表明其变化范围不超过仪器的测量精度的0.25%和0.20%。最近的研究还表明1969~1975年间太阳常数的变化不超过0.75%。因此,目前并不排除有小于1%的变化
辐射表的基本类型
太阳总辐射表
太阳总辐射表的感应元件采用了绕线电镀式多接点热电堆,其表面涂有高吸收率的黑色涂层,感应元件的热接点在感应面上,而冷接点位于仪器的机体内,以便直接取环境温度。为防止热接点单方向通过玻璃罩与环境进行热交换即影响测量精度,太阳总辐射表采用了两层玻璃罩的结构。同时,为了避免太阳辐射对冷接点的影响,又加了一个白色防辐射盘用来反射阳光的热辐射。当有光照时,冷热结点产生温差即产生电动势,也就是将光信、
号转换为电信号输出,在线性误差范围内,输出信号与太阳辐照度成正比。再则为了减小环境温度对辐射仪器输出的影响,我们则在仪器内附加了温度补偿装置——热敏电阻,通过调整热敏电阻的温度系数来实现对辐射表输出电势的自动补偿。
应用范围
太阳总辐射表可用来测量光谱范围为0.28-3.0μm太阳总辐射(亦可用来测量入射到斜面上的太阳总辐射)的感应元件。与计算机及各种日射记录仪配接使用,能精确地测量出太阳总辐射能量,并及时记录太阳辐射瞬时值及累计值。
1、太阳能发电2、太阳能热水器与太阳能工程3、太阳能建筑领域4、环境科学辐射能量平衡研究5、极地、海洋、冰川气候研究6、农林业生态研究 序号名称TBQ-2TBQ-2-B1灵敏度7—14μVW∕m∧-27—14μVW∕m∧-22时间响应≤30s(99%)≤30s(99%)3内阻约350Ω约350Ω4稳定性(一年内灵敏度变化率)±2%±2%5余弦(晴天太阳高度为10°时对理想值的偏差)≤±5%≤±5%6光谱范围0.3~3.0μm0.28~3.0μm7温度特性(-20℃~+40℃)±5%±2%8重量2.5kg2.5kg9测量范围0~2000W/m∧20~2000W/m∧210信号输出0~20mV0~20mV11测量精度5%2%全自动跟踪太阳直接辐射表
全自动跟踪太阳直接辐射表是国内首创的无人值守太阳直接辐射表。它人性化的设计理念,使人们对太阳直接辐射的测量不再繁琐。无需每天的调试,无需不停的维护,你只需要将它安装在测试场地,就可以精确的测量到每天不同时刻的太阳直接辐射值。无论是晴天、阴天或者雨天,它能保证在各种天气条件下的精确测量,是户外测量太阳直接辐射的第一选择。全自动跟踪太阳直接辐射表用于测量光谱范围为0.28μm~3μm的太阳直接辐射值。当太阳直接辐射值超过120W/㎡时和日照时数记录仪连接,也可直接测量日照时数。
基本原理
全自动跟踪太阳直接辐射表采用角度传感器与四象限光平衡传感器等方面技术自动跟踪太阳运转,使太阳光垂直照射到辐射传感器的光筒内。仪器由底座、台架、丝杠、齿轮箱、电机、微机控制器、直接辐射传感器、电源等部分组成。跟踪软件按照太阳运动轨迹与光追踪相结合方式运行。采用二维自动跟踪方式,太阳赤纬角跟踪自动调整,可实现全天侯自动对太阳的实时追踪。直接辐射表的光筒内部由光栏、内筒、热电堆(感应面)、干燥剂等组成。感应部件是采用绕线电镀式多接点热电堆,其表面涂有高吸收率的黑色涂层。热结点在感应面上,冷结点在机体内,在线性范围内产生的温差电势与太阳直接辐照度成正比。 序号名称技术范围 1灵敏度7~14μv/w·m∧-22响应时间≤0.1s(99%)3内阻约90Ω4稳定性(一年内灵敏度变化率)±2%5温度特性(-20℃~+40℃)±2%6非线性±2%7重量5kg8测试范围总辐射0~2000W/m∧2散射辐射0~2000W/m∧2直接辐射0~2000W/m∧2日照时数0~24h9光谱范围(适合光伏电站测量)400nm~1100nm10遮光环旋转速度6s/360°11供电电压DC12VAC220V,功率:3W12采集精度小于1μv13通讯接口标准RS232通讯接口,与监测中心PC机有线连接。14测量参数输出总辐射散射辐射直接辐射日照时间的瞬时值输出15配套软件太阳辐射监测系统管理软件一套,在windows XP以上环境即可运行。实时显示各项数据,自动存储,自动计算并绘制太阳各种辐射的瞬时值曲线图。数据存储格式为EXCEL格式,可供其它软件调用。散射辐射表
散射辐射是由于空气分子和气溶胶粒子的作用,或由于空气密度的涨落以及不均一,电磁辐射能量以一定规律在各方向重新分布的现象。散射波能量的分布与入射波长、强度及粒子的大小、形状和折射率有关,分别称为瑞利散射(分子散射)和大粒子的米散射。空气分子对可见光的散射属于瑞利散射,光强与波长的四次方成反比,所以天空呈现蔚蓝色;云滴和气溶胶粒子对可见光属于米散射,光强与波长无关,故云呈白色。正是由于大气对太阳辐射的散射作用,天空才变得明亮蔚蓝,否则将是漆黑一片,惟有一轮太阳异常光亮耀目地悬挂在空中。
基本结构
装置设有宽度为65mm,直径为400mm的遮光环圈,固定在刻有纬度刻度与赤纬刻度标尺的丝杆调整螺旋上。标尺与支架固定在底盘上,根据架射地点的地理纬度而固定。太阳总辐射表安装在支架平台上,其高度应正好使辐射感应平面(黑体)位于遮光环中心。通过调节赤纬度,可使遮光环全天遮住太阳的直接辐射。 序号名称技术范围1纬度刻度范围0~50°2赤纬度范围±25°3环带直径Φ400mm4重 量15kg5外形尺寸410mm×500mm×500mm净辐射表
净辐射 能量是构成宽阔的植物群落的蒸腾和光合作用的热平衡的测定基础。它是太阳辐射与地面辐射的净差值,其主要指光谱范围为0.27~3μm的短波辐射和3~50μm的地球辐射。净辐射表是专业测量净辐射的精密仪表。
基本原理
该表的工作原理为热电效应原理,感应部分是由康铜及镀铜组成的快速响应线绕、多圈电镀式热电堆,热电堆的上下两个面紧贴着涂有无光黑漆的感应面。当上下两个感应面受到不同的光辐射时加热了其各自的热电堆,形成冷热结点,产生温差电势。当太阳总辐射与向下的大气长波辐射之和大于地表反射短波辐射与地表长波辐射之和时,净辐射为正,反之为负。 序号名称技术范围1灵 敏 度7~14µV/W·m∧-22时间响应≤ 1min(99%)3光谱响应0.28µm~50µm4双面灵敏度的允差≤10%5内阻约150Ω6重量1.0kg分光谱辐射表
分光谱辐射表是与各种日射记录仪或直流电位差计配接使用,精确测出总辐射量,红外光谱区、可见光区和紫外光谱区的太阳辐射量的一套仪表。同时,可以根据需求做出相应的调整。安装时应选择周围没有障碍物,保证日出、日落的方位上无高度角超过5°的障碍物,并应避免出现阴影落在感应面上的现象。安装时将该表的插头朝北放置,先调水平,然后在固定。1、石英罩表可以单独测量大地总辐射量。2、石英罩表(280nm)和JB400(黄)罩表同时使用,其测得辐射量之差即为紫外区辐射量,其中石英罩表(280nm)与石英罩表(320nm)辐射量之差为紫外B波段辐射量,石英罩表(320nm)与JB400黄罩表测得辐射量之差为紫外-A波段辐射量。3、JB400(黄)罩表和HB780(红)罩表同时使用,其测得的辐射量之差即为可见光辐射量。4、在可见光区可增加CB500和RB600两种表。5、HB780(红)罩表可以单独测量红外区辐射量。
基本原理
分光谱辐射表采用光电转换感应原理,其感应元件均采用绕线电镀式多接点热电堆,且在感应面涂有高吸收率的黑色涂层, 冷热结点产生温差电势,在线性误差范围内,输出与太阳光的辐射强度成正比。为减少环境温度对表的性能影响,配有温度补偿线路。该表内罩为石英玻璃,外罩经精密冷加工磨制而成的光学玻璃,在保证产品的检测精度同时也保证了产品的质量。 序号 名称技术范围备注1灵敏度7~14µV/W·m∧-2 2响应时间≤20s99%3内阻400Ω 4温度特性约0.05%℃在温度环境下-20℃~+50℃范围内5稳定性≤±2% 6余弦天顶角0°~70°偏离标准±3%天顶角70°~80°偏离标准±7%7方位无 8工作光谱范围 280nm~320nm 400nm~320nm500nm~320nm700nm~320nm780nm~320nm9工作辐射强度范围0~1.4kW/㎡ 10工作环境-50℃~+50℃相对湿度90%(40℃)11重量2.5㎏