本文总览:
逆变器知识点
1.逆变器报 PV 反接故障,无法自行并网。
答:逆变器报 PV 反接故障需要检查直流侧是否存在接地,特别是正极是否存在接地;再一个检查逆变器绝缘阻抗检测板是否存在问题,注意上面的电阻不应发黑,轻微的颜色变深属于正常现象。�
2.逆变器及箱变测控数据不刷新。
答:逆变器及箱变数据是由通讯管理机进行采集的,如果通讯管理机和设备之间通讯出现故障,那么后台数据是不刷新的。还有一种情况是通讯管理机和后台之间的通讯出现问题。
3.逆变器夜间不能发无功,不能参与电压调节。
答:夜间无功补偿功能出厂前默认是在关闭状态,根据客户需求来进行开放,若要使用该功能需要通过上位机进行设置并配合后台遥调便可以实现。�
4.个别逆变器输出功率偏低一段时间后自行恢复。
答:个别逆变器功率低可以使用钳流表检测一下各支路的电流是否差别较大,若没有钳
流表可以在液晶屏上查看各支路的电流是否差异过大。�
5.环形变压器烧坏是什么原因,如何处理?
答:环形变压器烧坏一般和变压器过载有关,正常情况下逆变器自身控制电功耗比较小,不存在变压器过载的可能,如果变压器烧坏首先要检查低电压穿越模块是否正常,输出端是否存在短路。
6.IGBT 经常故障停机、逆变器重启又恢复正常?
答:重启便恢复一般是由于风机故障或IGBT、驱动板故障导致,当模块温度过高时会保护停机,建议查看故障信息是否存在模块过温及IGBT 故障等。
7.模块对插端子接触不良是否会导致逆变器故障停机?
答:模块对插端子接触不良会出现对插端子发热,甚至有可能损坏功率模块,建议出现接触不良问题后及时联系我们售后工程师到现场进行更换。�
8.逆变器内部通讯故障(5 台逆变器前后交替出现过,近期又出现),该如何处理?
答:如果多台逆变器都有通讯问题考虑通讯线的布线以及安装问题。是否通讯线与功率电缆距离过近且平行走线。
9.液晶显示屏显示数据固化(经常性),该如何处理?
答:液晶屏数据如果不刷新可能是液晶屏死机或者内部通讯有故障,建议联系售后工程师前去处理。�
10.绝缘阻抗低是什么原因,如何处理?
答:绝缘阻抗低是由于组件连接器或者线路对地绝缘性变差造成漏电流过大引起,漏电流过大对人身安全以及发电量都有影响。
11.逆变器开机后无响应,该如何处理?
答:逆变器开机无响应请查看本地-远程切换旋钮是否打在本地,如果打在远程只能从
后台控制开关机。�
12. f(t)=Asin(ωt+Ф)是表达什么样的公式?
答:这个表达式定义了正弦波。其中 A 表示幅值,ω表示角频率,Ф表示初相位。
�
13.低电压穿越的时候,为什么会发容性无功,容性无功电流超前电压,这样就可以实现不掉电吗?为什么?用公式进行解释和说明?
答:逆变器在低电压穿越时,向网侧发容性无功,主要是为了支撑网侧电压。不是容性无功导致系统不掉电;
�
14.IGBT 开通和关断就可以实现整流么?开通和关断是什么意思,什么原理?
答:IGBT 的开通和关断不但可以实现逆变还可以实现整流。�IGBT 的开通表示管子的 CE 之间有电流流过;�IGBT 的关断表示管子的 CE 之间截止,无电流通过;�
原理:IGBT 是三端器件,具有栅极 G、集电极 C 和发射极 E。�IGBT 是场控器件,其开通和关断是由栅极和发射极之间的电压UGE 决定的,当UGE为正大于开启电压UGE th ( ) ,MOSFET 内形成沟道,并为晶体管提供基极电流进而使 IGBT导通;�
15.逆变器三相电流不平衡怎么处理?主要由什么造成?
答:1、逆变器三相电流不平衡主要是由 AC 滤波电容、功率模块、交流电流采样、转接板采样异常造成的。�
①.如果是 AC 滤波电容造成的,更换滤波电容;�
②.如果是功率模块故障,更换驱动板;�
③.如果是采样问题,检查故障相功率模块的交流霍尔传感器及相应连至转接板的线路,更换霍尔传感器或禁锢线路,更换转接板。
16.汇流箱至逆变器的电缆接线,绝缘电阻降至多少时。可引起逆变器防雷失效,报警?有其他引起这方面故障的原因么?PV 绝缘阻抗异常是怎么回事?
答:逆变器直流侧绝缘阻抗下降与逆变器防雷失效无必然联系。通常逆变器报 PV 绝缘阻抗异常是由直流侧接地所引起。PV 组件的绝缘阻抗与组串的串并联数量基本呈反比关系,同时电池板对地寄生电容容的变化、现场空气湿度、直流侧汇流箱电缆的对地绝缘参数都会造成逆变器直流侧绝缘阻抗值发生改变。我司逆变器有绝缘阻抗检测模块,可以实时检测逆变器的 PV 绝缘阻抗参数。当逆变器 PV 绝缘阻抗参数降低至逆变器告警值以下,设备会告警;当参数降至逆变器保护值以下,设备会停机。�
17.逆变器报 PV 阻抗异常,更换阻值更小的电阻后,此故障消除。请解释此现象原因?在更换小阻值的电阻后,是否对电容放电时间长短及设备的使用寿命的影响?
答:对于有负极接地系统逆变器报 PV 阻抗异常,需更换阻值更大的电阻用来限制降低电流,故障消除。设备自带放电电阻用来对电容放电。对设备的使用寿命无影响。
18.逆变器夜间使能时的工作原理,装置的耗能情况,直流侧母排等设备的带电情况是怎样的?
答:逆变器夜间使能从交流侧取电,经过整流输出直流电送往设备直流侧,此功能通常处于禁止状态。开启此功能设备夜间直流母排带电。
19.逆变器对特次谐波的滤波设计是怎样的?逆变器对电网侧传回的滤波,如:3、5、7 次谐波,是否有滤除功能以及对设备的影响?
答:� 我司逆变器中,LC 滤波器滤除的是逆变器输出的高次谐波电流。磁环利用阻抗失
配原理,滤除干扰信号。网侧电压的谐波,如 3、5、7 次电压谐波比较低,逆变器输出的电压与网侧的电压保持一致,并无滤除功能。
�
20.逆变器直流断路器跳闸是否与直流线缆接地有关?将有问题的电缆更换后问题依然存在,如何处理?
答:通常逆变器直流侧断路器跳闸原因有:过流、过温、断路器设置错误、断路器自身质量原因、需具体情况具体分析。
21.单台逆变器交流电流不平衡告警停机后重启的原因?
答:逆变器循环自检,满足起机条件后,自动重新并网;�
22.环境温度对逆变器的影响?
答:环境温度对逆变器的影响主要有两个方面�
①.� 环境温度会导致逆变器降额运行;�
②.� 环境温度超过 60 度,会导致逆变器停机;�
23.在限负荷的情况下,对负荷的调整速度过慢,如何处理?
答:若逆变器的调节速率比较慢,那么需要用上位机软件进行设置,更改调节的速率,能够快速实现对功率的改变;�
24.逆变器报内部通讯故障是什么原因?
答:DSP 没有检测到转接板 RS485、IO 板、PV 板和温湿度板的 RS485 的信号时,报内部通讯故障。�
原因:内部通讯 RS485 的线松动或与通讯有关的单板损坏;�
25.单台逆变器液晶显示屏每日发电量从 2000 开始累积,报未授权是什么原因?
答:逆变器报未授权就是授权时间已到,需要使用上位机软件重新设置授权码。�
26.逆变器报电网电压过高或者电网电压过低是什么原因?
答:对于该问题有两种原因:�
①电网电压真实过高或者过低;�
②采样的单板存在故障,可能会导致电网电压与实际值不符,报过高或者高低;�
27.低电压穿越的动作条件是怎样的?
答:需要逆变器进行低电压穿越的客观条件;�
逆变器能够实现低电压穿越除了客观上需要低电压穿越,同时逆变器的需要在“低电压穿越”或“孤岛保护”选择低电压穿越模式;�
简单的逆变器电路图分析
这里介绍的逆变器(见图)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。
电路图
工作原理
这里我们将详细介绍这个逆变器的工作原理。
方波信号发生器(见图3)
这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。
场效应管驱动电路
这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。
场效应管驱动电路
由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图4所示。
MOS场效应管电源开关电路。
这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。
图5
MOS 场效应管也被称为MOS FET, 既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS 场效应管,其内部结构见图5。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。
图6
为解释MOS 场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。
图7a 图7b
对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS 场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。我们也可以想像为两个N型半导体之间为一条沟,栅极电压的建立相当于为它们之间搭了一座桥梁,该桥的大小由栅压的大小决定。图8给出了P沟道的MOS 场效应管的工作过程,其工作原理类似这里不再重复。
图8
下面简述一下用C-MOS场效应管(增强型MOS 场效应管)组成的应用电路的工作过程(见图9)。电路将一个增强型P沟道MOS场效应管和一个增强型N沟道 MOS场效应管组合在一起使用。当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。当输入端为高电平时,N沟道MOS场效应管导通,输出端与电源地接通。在该电路中,P沟道MOS场效应管和N沟道MOS场效应管总是在相反的状态下工作,其相位输入端和输出端相反。通过这种工作方式我们可以获得较大的电流输出。同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1到2V时,MOS场效应管既被关断。不同场效应管其关断电压略有不同。也正因为如此,使得该电路不会因为两管同时导通而造成电源短路。
由以上分析我们可以画出原理图中MOS场效应管电路部分的工作过程(见图10)。工作原理同前所述。这种低电压、大电流、频率为50Hz的交变信号通过变压器的低压绕组时,会在变压器的高压侧感应出高压交流电压,完成直流到交流的转换。这里需要注意的是,在某些情况下,如振荡部分停止工作时,变压器的低压侧有时会有很大的电流通过,所以该电路的保险丝不能省略或短接。
制作要点
电路板见图11。所用元器件可参考图12。逆变器用的变压器采用次级为12V、电流为10A、初级电压为220V的成品电源变压器。P沟道MOS场效应管(2SJ471)最大漏极电流为30A,在场效应管导通时,漏-源极间电阻为25毫欧。此时如果通过10A电流时会有2.5W的功率消耗。N沟道MOS场效应管(2SK2956)最大漏极电流为50A,场效应管导通时,漏-源极间电阻为7毫欧,此时如果通过10A电流时消耗的功率为0.7W。由此我们也可知在同样的工作电流情况下,2SJ471的发热量约为2SK2956的4倍。所以在考虑散热器时应注意这点。图13展示本文介绍的逆变器场效应管在散热器(100mm×100mm×17mm)上的位置分布和接法。尽管场效应管工作于开关状态时发热量不会很大,出于安全考虑这里选用的散热器稍偏大。
逆变器的性能测试
测试电路见图14。这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。其测试结果见电压、电流曲线关系图(图15a)。可以看出,输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。以负载为60W的电灯泡为例:
假设灯泡的电阻不随电压变化而改变。因为R灯=V2/W=2102/60=735Ω,所以在电压为208V时,W=V2/R=2082/735=58.9W。由此可折算出电压和功率的关系。通过测试,我们发现当输出功率约为100W时,输入电流为10A。此时输出电压为200V。
逆变器的推动电路是怎样的工作原理
主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类[1]:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。 整流器最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。 平波回路在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。 逆变器同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。 控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。 1.车载逆变器电路工作原理图1电路中,由芯片IC1及其外围电路、三极管VT1、VT三、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路由芯片IC2及其外围电路、三极管VT5、VT八、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD八、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装形状为双列直插式塑封结构,工作温度规模为0℃-70℃,极限工作电源电压为7V~40V,无上工作频率为300kHzTL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力TL494芯片的内部电路如图2所示图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路上电时电容C1两端的电压由0V慢慢升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路启动当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作IC1的15脚外围电路的R1、Rt、R2组成过热保护电路,Rt为正温度系数热敏电阻,常温阻值可在150Ω~300Ω规模内任选,适当选大些可提高过热保护电路启动的灵敏度热敏电阻Rt安装时要紧贴于MOS功率开关管VT2或VT4的金属散热片上,这样才能保证电路的过热保护功效有效IC1的15脚的对地电压值U是1个比力重要的参数,图1电路中U≈Vcc×R2÷(R1+Rt+R2)V,常温下的计较值为U≈6.2V结合图1、图2可知,正常工作情况下要求IC1的15脚电压应略高于16脚电压(与芯片14脚相连为5V),其常温下6.2V的电压值大小恰恰满足要求,并略留有一定的余量当电路工作异常,MOS功率管VT2或VT4的温升大幅提高,热敏电阻Rt的阻值超过约4kΩ时,IC1内部比力器1的输出将由低电平翻转为高电平,IC1的3脚也随即翻转为高电平状态,致使芯片内部的PWM比力器、"或"门以及"或非"门的输出均发生翻转,输出级三极管VT1和三极管VT2均转为截止状态当IC1内的两只功率输出管截止时,图1电路中的VT1、VT3将因基极为低电平而达到最高限度导通,VT1、VT3导通后,功率管VT2和VT4将因栅极无正偏压而处于截止状态,逆变电源电路停止工作IC1的1脚外围电路的VDZ1、R5、VD1、C2、R6构成12V输入电源过压保护电路,稳压管VDZ1的稳压值决定了保护电路的启动门限电压值,VD1、C2、R6还组成保护状态维持电路,只要发生瞬间的输入电源过压现象,保护电路就会启动并维持一段时间,以确保后级功率输出管的安全考虑到汽车行驶过程中电瓶电压的正常变化幅度大小,通常将稳压管VDZ1的稳压值选为15V或16V较为合适IC1的3脚外围电路的C三、R5是构成上电软启动时间维持以及电路保护状态维持的关键性电路,现实上不管是电路软启动的控制还是保护电路的启动控制,其最终结果均反应在IC1的3脚电平状态上电路上电或保护电路启动时,IC1的3脚为高电平当IC1的3脚为高电平时,将对电容C3充电这导致保护电路启动的诱因消失后,C3通过R5放电,因放电所需时间较长,使得电路的保护状态仍得以维持一段时间当IC1的3脚为高电平时,还将沿R八、VD4对电容C7进行充电,同时将电容C7两端的电压提供给IC2的4脚,使IC2的4脚保持为高电平状态从图2的芯片内部电路可知,当4脚为高电平时,将抬高芯片内死区时间比力器同相输入端的电位,使该比力器输出保持为恒定的高电平,经"或"门、"或非"门后使内置的三极管VT1和三极管VT2均截止图1电路中的VT5和VT8处于达到最高限度导通状态,其后级的MOS管VT6和VT9将因栅极无正偏压而都处于截止状态,逆变电源电路停止工作IC1的5脚外接电容C4(472)和6脚外接电阻R7(4k3)为脉宽调制器的定时元件,所决定的脉宽调制频率为fosc=1.1÷(0.0047×4.3)kHz≈50kHz即电路中的三极管VT1、VT2、VT三、VT4、变压器T1的工作频率均为50kHz摆布,是以T1应选用高频铁氧体磁芯变压器,变压器T1的作用是将12V电子脉冲升压为220V的电子脉冲,其初级匝数为20×2,次级匝数为380IC2的5脚外接电容C8(104)和6脚外接电阻R14(220k)为脉宽调制器的定时元件,所决定的脉宽调制频率为fosc=1.1÷(C8×R14)=1.1÷(0.1×220)kHz≈50HzR29、R30、R27、C11、VDZ2组成XAC插座220V输出端的过压保护电路,当输出电压过高时将导致稳压管VDZ2击穿,使IC2的4脚对地电压上升,芯片IC2内的保护电路动作,堵截输出车载逆变器电路中的MOS管VT2、VT4有一定的功耗,必须加装散热片,其他部件均不需要安装散热片当车载逆变器产品连续应用于功率较大的场合时,需在其内部加装12V小电扇以帮助散热2.电路中的元部件参数电路中各元部件的参数列于附表三.车载逆变器产品的维修要端由于车载逆变器电路一般都具备上电软启动功效,是以在接通电源后要等5s-30s后才会有交流220V的输出,同时LED指示灯点亮当LED指示灯不亮时,则表明逆变电路没有工作当接通电源30s以上,LED指示灯还没有点亮时,则需要测量XAC输出插座处的交流电压值,若该电压值为正常的220V摆布,则申明仅仅是LED指示灯部分的电路出现了故障;若经测量XAC输出插座处的交流电压值为0,则申明故障原因为逆变器前级的逆变电路没有工作,可能是芯片IC1内部的保护电路已经启动判断芯片IC1内部保护电路是否启动的方法是:用万用表的直流电压挡测量芯片IC1的3脚对地直流电压值,若该电压在1V以上则申明芯片内部的保护电路已经启动了,否则申明故障原因长短保护电路动作所致若芯片IC1的3脚对地电压值在1V以上,表明芯片内部的保护电路已启动时,需进一步用万用表的直流电压挡测试芯片IC1的15、16脚之间的直流电压,以及芯片IC1的1、2脚之间的直流电压正常理况下,图1电路中芯片IC1的15脚对地直流电压应高于16脚对地直流电压,2脚对地的直流电压应高于1脚对地的直流电压,只有当这两个条件同时得到满足时,芯片IC1的3脚对地直流电压才能为正常的0V摆布,逆变电路才能正常工作若发现某测试电压不满意足上面所说的关系时,只需按相应支路去查找故障原因,即可解决问题四.车载逆变器产品的主要元部件参数及代换图1电路中的主要部件有驱动管SS8550、KSP44,MOS功率开关管IRFZ48N、IRF740A,快恢复整流二极管HER306以及PWM控制芯片TL494CN(或KA7500C)SS8550为TO-92情势封装的PNP型三极管其引脚电极的辨认方法是,当面向三极管的印字标识面时,引脚1为发射极E、2为基极B、3为集电极CSS8550的主要参数指标为:BVCBO=-40V,BVCEO=-25V,VCE(S)=-0.28V,VBE(ON)=-0.66V,fT=200MHz,ICM=1.5A,PCM=1W,TJ=150℃,hFE=85~160(B)、120~200(C)、160~300(D)与TO-92情势封装的SS8550相对应的表贴部件型号为S8550LT1,其封装情势为SOT-23SS8550为目前市场上较为常见、易购的三极管,价格也比力自制,单只售价仅0.3元摆布KSP44为TO-92情势封装的NPN型三极管其引脚电极的辨认方法是,当面向三极管的印字标识面时,其引脚1为发射极E、2为基极B、3为集电极CKSP44的主要参数指标为:BVCBO=500V,BVCEO=400V,VCE(S)=0.5V,VBE(ON)=0.75V,ICM=300mA,PCM=0.625W,TJ=150℃,hFE=40~200KSP44为电话机中常用的高压三极管,当KSP44损坏而无法买到时,可用日光灯电路中常用的三极管KSE13001进行代换KSE13001为FAIRCHILD公司产品,主要参数为BVCBO=400V,BVCEO=400V,ICM=100mA,PCM=0.6W,hFE=40~80KSE13001的封装情势虽然同样为TO-92,但其引脚电极的排序却与KSP44不同,这一点儿在代换时要特别注意KSE13001引脚电极的辨认方法是,当面向三极管的印字标识面时,其引脚电极1为基极B、2为集电极C、3为发射极EIRFZ48N为TO-220情势封装的N沟道增强型MOS快速功率开关管其引脚电极排序1为栅极G、2为漏极D、3为源极SIRFZ48N的主要参数指标为:VDss=55V,ID=66A,Ptot=140W,TJ=175℃,RDS(ON)≤16mΩ当IRFZ48N损坏无法买到时,可用封装情势和引脚电极排序完全相同的N沟道增强型MOS开关管IRF3205进行代换IRF3205的主要参数为VDss=55V,ID=110A,RDS(ON)≤8mΩIRF740A为TO-220情势封装的N沟道增强型MOS快速功率开关管其引脚电极排序1为栅极G、2为漏极D、3为源极SIRF740A的主要参数指标为:VDSS=400V,ID=10A,Ptot=120W,RDS(ON)≤550mΩ当IRF740A损坏无法买到时,可用封装情势和引脚电极排序完全相同的N沟道增强型MOS开关管IRF740B、IRF740或IRF730进行代换IRF740、IRF740B的主要参数与IRF740A完全相同IRF730的主要参数为VDSS=400V,ID=5.5A,RDS(ON)≤1Ω其中IRF730的参数虽然与IRF740系列的相比略差,但对于150W以下功率的逆变器来说,其参数指标已经是绰绰有余了HER306为3A、600V的快恢复整流二极管,其反向恢复时间Trr=100ns,可用HER307(3A、800V)或者HER308(3A、1000V)进行代换对于150W以下功率的车载逆变器,其中的快恢复二极管HER306可以用BYV26C或者最容易采办到的FR107进行代换BYV26C为1A、600V的快恢复整流二极管,其反向恢复时间Trr=30ns;FR107为1A、1000V的快恢复整流二极管,其反向恢复时间=100ns从部件的反向恢复时间这一参数指标考虑,代换时选用BYV26C更为合适些TL494CN、KA7500C为PWM控制芯片对目前市场上的各种车载逆变器产品进行解析可以发现,有的车载逆变器产品中使用了两只TL494CN芯片,有的是使用了两只KA7500C芯片,还有的是两种芯片各使用了一只,更为离奇的是,有的产品中居然故弄玄虚,将其中的一只TL494CN或者KA7500C芯片的标识进行了打磨,然后标上各种古怪的芯片型号,让维修人员倍感困惑现实上只要对照芯片的外围电路一看,就知道所用的芯片必然TL494CN或者KA7500C经仔细查阅、对比TL494CN、KA7500C两种芯片的原厂pdf资料,发现这两种芯片的外部引脚排列完全相同,就连其内部的电路也几乎完全相同,区分仅仅是两种芯片的内部运放输入端的基准源大小略微有点差别,对电路的功效和性能没有影响,是以这两种芯片完全可以相互替代使用,并且代换时芯片的外围电路的参数没必要做任何的修改经现实使用过程中的成功代换经验,也证实了这种代换的可行性和代换后电路工作性能的可靠性由于目前市场上已经很难找到KA7500C芯片了,并且即使能够买到,其价格也至少是TL494CN芯片的两倍以上,是以这里介绍的使用TL494CN直接代换KA7500C芯片的成功经验和方法,对于车载逆变器产品的生产厂商和泛博维修人员来说确实是1个很好的消息
求助:怎么制作一个简单的逆变器
用E形的也可以 O形的也行
E形的就是线圈好绕点
O形的抗干扰能力强 稳定性好
输入不一定用交流电(接电瓶) 但是变压器的线圈上一定要用交流电
交流电的由来,由一个信号发生器发出的脉冲信号经大功率三极管或IGBT管放大后送进变压器的线圈,因为变压器的线圈有电感,于是就能产生交流电
输出电流 变压器始终都有个特点 就是变压器的输入功率等于输出功率 损失功率(一般损失很小,要求不高的话可忽略不计)你可以根据这个特点来计算输出电流 ,要算这个输出电流就要先测量输入电流 和输入电压、输出电压 最后就能算出输出电流
公式 P入=P出 U入*I入=U出*I 出
输出电流还跟你绕的变压器副线圈的线圈粗细及匝数有关 线圈越粗匝数越少 能输出的电流就越大 反之越小
逆变器的效率及性能 要看你怎么设计电路 和取变压器线圈的相关参数
求大神帮忙理解下这个逆变电路图
首先纠正一下图中的错误:在Q1、Q2栅极对地要增加两个电阻,同时将R6短接,否则是不能控制Q1、Q2的关断的。
先看一下SG3524的功能图:
工作原理:
1、振荡部分
SG3524是通用脉宽调制器(PMW),属于数字、模拟混合电路。它的振荡频率由6、7脚的R1、C1决定,f≈1.3/R1C1,图中参数的振荡频率约为87Hz。
2、驱动部分
SG3524内部有两个三极管轮流导通(截止)输出,用来驱动外部的场效应管Q1、Q2轮流导通与关断。
由于Q1、Q2是场效应管,栅极对地相当于一个电容,SG3524内部三极管导通时给栅极电容充电,使场效应管导通,但三极管截止时栅极电容需要放电才能使场效应管截止,增加的R9、R10就是这个作用。
3、变换输出
Q1、Q2轮流导通与关断,相当于在变压器T的原边输入一个交流电,在变压器输出端获得交流输出。
4、控制部分
利用SG3524的补偿端9脚进行控制。
补偿端9脚控制电位范围为1~3.5V,补偿端9脚电位越高输出占空比越小,最终的交流输出电压越低,补偿端9脚电位越低输出占空比越大,最终的交流输出电压越高。调节Rp可以调节补偿端9脚电位。