大家好!今天让小编来大家介绍下关于分布式光伏无功补偿_华为光伏逆变器产品运行的优势有哪些?的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.光伏电站培训的内容?2.华为光伏逆变器产品运行的优势有哪些?
3.什么是分布式光伏发电系统?
光伏电站培训的内容?
光伏电站培训的内容:
《国家职业资格证书二级/技师》
《国家职业资格证书三级/高级技能》
《光伏发电技术(高级)工程师》
《光伏(高级)电气工程师》
《光伏发电系统(高级)设计师》
《分布式光伏电站运维(高级)工程师》
《太阳能光伏发电工程设计、施工企业资质培训合格证书》
《太阳能光伏电站设计优秀企业荣誉证书》
光伏电站培训计划:
1、应知部份
(1)了解光伏电站的选址及工程慨况。
(2)理解光伏直流发电系统铭牌参数意义。
(3)理解太阳辐射、方位角。
(4)理解太阳能资源统计计算,主要考虑可利用小时。
(5)理解“同步”,“异步”的含义。
(6)理解太阳能电池板工作原理。
(7)理解汇流箱工作原理。
(8)理解逆变器工作原理。
(9)理解一套光伏发电直流单元系统原理。
(10)理解逆变器的启动控制模式,在哪些情况下应实现停机或紧急停机,理解停机控制流程的优先步骤。
(11)理解逆变器的操作模式、运行维护注意事项。
(12)理解逆变器主控柜的结构组成及各元件功能作用。
(13)理解光伏发电直流单元监控系统的工作原理及主要功用。
(14)理解无功调节装置工作原理、技术参数及控制方式。
(15)理解箱变各部件组成及运行原理。
(16)理解电站交直流系统的构成。
(17)理解电站远程控制系统的组成、功用。
(18)了解电站远程监控中心的信息输出、查询、浏览内容。
2、应会部分:
(1)熟悉掌握方阵、一次集电线路及输配电系统的组成,工作原理和运行维护内容,异常、故障及事故判断和处理方法。
(2)熟悉掌握直流系统,10kV集电系统,箱变、主变压器保护配置和110 kV线路保护装置的配置,运行维护内容、异常、故障及事故判断和处理方法。
(3)熟悉掌握光伏电站无功补偿装置设备工作原理,投切操作、运行维护、、异常故障判断和事故处理方法。
(4)熟悉撑握光伏电站太阳能池板的工作原理、额定工作参数及各种运行工况。
(5)熟悉掌握光伏电站逆变器是如何实现自动启动,并网,如何实现并网前的调节,并网后的有、无功调节和控制。
(6)掌握逆变器及其控制保护系统的组成、功能作用及运行维护注意事项。
(7)掌握汇流箱、逆变器、箱变系统技术参数、功能作用及运行维护注意事项。
(8)掌握齿轮箱功能作用、正常工作条件、变速原理及冷却原理,运行维护注意事项。
(9)掌握齿轮箱的润滑监控系统结构组成、作用、运行维护的注意事项。
(10)掌握子阵、组件工作原理,一般故障查找和处理方法。
(11)掌握各种电气测量仪器的正确使用方法。
(12)掌握光伏电站监控系统的硬件结构、电源配置及软件组成与功能。
(13)掌握电站监控系统对光伏直流发电系统的监控内容、故障诊断内容以及对逆变器的优化运行。
(14)掌握运用中央监控系统运行数据对光伏直流发电系统工作状况的分析方法,通过逆变器内部历史数据查询发电量的方法及逆变器故障信息的获取方法。
(15)熟悉光伏直流发电系统各种状态信息,故障信号及故障类型。
(16)掌握“五防”闭锁装置的功能和使用方法、运行维护。
(17)掌握电气设备倒闸操作原则和方法。
(18)掌握停电线路、箱变、逆变器、光伏方阵正常操作,常见故障处理方法及维护注意事项.
(19)学会统计计算电量、容量系数、利用时数、故障率等。
(20)掌握光伏电站各类生产表格的正确填写和报送。
(21)熟悉“两票”“三制”内容。
华为光伏逆变器产品运行的优势有哪些?
1、火灾危险性分析
光伏电站火灾危险性较大的设备有汇流箱、逆变器、蓄电池、连接器、配电柜及变压器,易发生电气火灾。光伏电站内的主要建筑为综合控制室、变配电站,对于电压为35kV以上,单台变压器容量为5000kV˙A及以上的变电站,变压器规模属于GB50229-2006《火力发电厂与变电站设计防火规范》[1](以下简称《火力发电规范》)的适用范围,其消防设计可参照该规范执行,其他变电站的消防设计应当执行GB50016-2006《建筑设计防火规范》[2](以下简称《建规》)。
结合光伏发电站内建筑物的特性,参照《火力发电规范》,光伏电站的建(构)筑物火灾危险性分类及耐火等级如表1[1]。当电缆夹层电缆采用A类阻燃电缆时,其火灾危险性可为丁类;当综合控制室未采取防止电缆着火后延伸的措施时,火灾危险性应为丙类;配电装置楼和屋外配电装置根据设备含油量确定火灾危险性。
2、防火措施
根据《火力发电规范》,结合光伏电站的电气设备特性,光伏电站应采取以下防火措施:
2.1 总平面布置
光伏发电站的站址选择应根据国家可再生能源中长期发展规划、太阳能资源、接入电网、环境保护等因素全面考虑,电站内的建(构)筑物与电站外的建(构)筑物、堆场、储罐之间的防火间距应符合《建规》的规定。大、中型光伏发电站内的消防车道宜布置成环形,当为尽端式车道时,应设回车场地或回车道。
2.2 变压器及其他带油电气设备防火措施
(1)由于带油电气设备在使用过程中容易引发火灾,为了防止火势蔓延到贴邻建(构)筑物,在与其他建(构)筑物贴邻侧应设置防火墙[1]。
(2)屋内单台总油量为100kg以上的电气设备,屋外单台油量为1000kg以上的电气设备,应设置贮油或挡油设施,贮油设施内应铺设卵石层[1]。
2.3 电缆防火措施
由于光伏电站占地面积大,电缆分布广,无法针对电缆设置固定的灭火装置,在电缆沟道内应采用防火分隔和阻燃电缆作为应对电缆火灾的主要措施,集中敷设于沟道、槽盒中的电缆宜选用C类或C类以上的阻燃电缆。
2.4 光伏电站运行和维护安全
(1)运行和维护人员应具备相应的专业技能。维护前必须做好安全准备,断开所有应断开开关,确保电容、电感放电完全,必要时应穿绝缘鞋,带低压绝缘手套,使用绝缘工具,工作完毕后应排除系统可能存在的事故隐患。
(2)由于组件的特殊性,在接收辐射时,就会产生电压。光伏阵列串联后形成高压直流电,如不慎与人体形成环路,将会造成重大安全事故。一般在将光伏阵列接入系统前应保持组串处于断路状态,接入系统后在汇流箱(盒)开关关断的情况下进行连接。在施工过程中,应用遮挡物将光伏组件进行遮挡,遮挡有困难时,施工人员应配备好安全防护用品,确保安全。
(3)为防止设备过热、短路等事故,光伏电站主要部件周围不得堆积易燃易爆物品。
2.5 消防设施
2.5.1 消防给水电站的规划和设计,应同时设计消防给水系统,消防水源应有可靠的保证,消防给水量应按火灾时一次最大消防用水量的室内和室外消防用水量之和计算。以下情况可不设置:
(1)光伏方阵区(含逆变器升压室)宜不设置消防水系统。光伏阵列区主要由电气设备构成,白天直流侧始终带电,不适合用水灭火。
(2)参照《火力发电规范》,变电站户外配电装置区域(采用水喷雾的主变压器消火栓除外)可不设消火栓[1]。
(3)根据《建规》的规定,电站内建筑物满足耐火等级不低于二级,体积不超过3000m3,且火灾危险性为戊类时,可不设室内外消防结水[2]。
地面光伏电站的单体建筑物体积一般都小于3000m3,监控系统功能完备,值班人员少,建筑物分散。大型地面光伏电站一般多建于西北荒漠地区,干旱缺水,生活用水多采用汽车运输方式,水的使用成本髙,难以设置水消防系统。
2.5.2 自动灭火设施
参照《火力发电规范》,单台容量为125MV˙A及以上的主变压器应设置水喷雾灭火系统、合成型泡沫喷雾系统或其他固定式灭火装置。其他带油电气设备,宜采用于粉灭火器[1]。
油浸变压器的油具有良好的绝缘性和导热性,变压器油的闪点一般为130℃,是可燃液体,当变压器内部故障发生电弧闪络,油受热分解产生蒸气形成火灾,需设置水喷雾等自动灭火系统,在缺水、寒冷、风沙大、运行条件恶劣的地区,可以选用排油注氮灭火装置和合成泡沫喷淋灭火系统,对于户内封闭空间内的变压器也可采用气体灭火系统。对于中、小型变电站,自动灭火系统费用相对较高,可选用灭火器。
2.5.3 火灾自动报警系统
光伏发电站火灾危险源主要是电缆及电气类设备,因光伏电站发电量由太阳辐射大小决定,其电气设备负荷及电缆载流量也随太阳辐射量的变化而变化,早晚为零,中午接近设计值,因此光伏发电站火灾发生概率较常规火电厂小许多。参照《火力发电规范》,结合光伏发电站特性,可在大型光伏发电站或无人值守电站设置火灾报警系统。主控室、继电器设备室、无功补偿室、配电装置室可选用感烟火灾探测器,主变压器(室内)、电缆层和电缆竖井可选用线型感温火灾探测器。
2.5.4 消防供电、应急照明及灭火器
为保证消防供电的安全性和消防系统的正常运行,消防水泵、火灾报警、火灾应急照明应按Ⅱ类负荷供电,电站主控室、配电装置室应设置火灾应急照明和疏散标志,电站应按GB50140-2005《建筑灭火器配置设计规范》的要求设置灭火器。
什么是分布式光伏发电系统?
人类社会的进步离不开社会上各行各业的努力,各种各样的电子产品的更新换代离不开我们的设计者的努力,其实很多人并不会去了解电子产品的组成,比如华为的逆变器。
太阳能发电系统通常直接暴露在室外环境工作,经常遇到高温、高寒、高湿、大风沙,淋雨,盐雾等恶劣气象条件。华为可靠性实验室业界首创开发出了温度、湿度、腐蚀性粉尘三综合应力试验设备,使得逆变器产品在恶劣场景应用具有卓越的适应能力。针对户外应用,采用高温、淋雨、带电温循、外场暴露等加速方法,验证了逆变器的长期可靠性,保证设备长期稳定运行。
传统的逆变器设计和电气安全防护手段已经不能解决分布式的安全问题,必须开拓一种新的安全设计思路来保障屋顶光伏电站安全。华为分布式逆变器采用AI加持的AFCI拉弧检测技术,能够主动检测到拉弧2s内快速自动切断电路;通过大量电弧特征数据数据和自学习算法训练逆变器电弧检测模型,使电弧检测更精准,从而有效减少误报,给电站加上一道安全的防护锁。
智能电站运维:实现对组件的智能监控,逆变器成为电站的大脑和管家,华为组串式逆变器的智能组串监控,精度是智能汇流箱的6倍以上,比直流汇流箱更可靠。引入通信领域先进和成熟的技术,如4G移动通信等技术,将整个光伏电站的数据和信息管理通过无线的管道传输,电站健康检查,减少人工上站维护的成本,使电站工作在最佳状态。
华为产品一直重视长期可靠性,不仅要求产品按长寿命设计,还在材料特性、热分、材料的匹配等方面进行了长期的研究,积累了丰富的工程设计和试验经验。同时,华为具备世界一流的设备可靠性测试实验室。该实验室,拥有业界最全的产品全环境应用场景的模拟测试能力,以及先进的可靠性测试能力,包括气候、机械、室外风吹雨、太阳辐射、结冰等全场景测试能力,领先HALT测试、加速灰尘腐蚀等可靠性能力。
华为创新采用全数字控制技术和“硅进铜退”设计理念,增加芯片、先进软件算法等“硅”部件的使用,减少电容、电感等“铜”部件的数量和容量,逆变器损耗更小,效率更高,电能质量更好。SUN2000-5-20KTL三相智能逆变器最高效率98.65%,行业领先,率先通过了中国效率A级认证,业内最高,为客户25年高收益保驾护航。华为智能数采集成无功输出控制功能,帮助业主节省了无功设备成本;智能数采还具有优化算法,能动态实时计算无功补偿量,并通过智能光伏逆变器做无功补偿,保证系统功率因数达标,发电量不减少,也避免了用户电力调控不达标造成的罚款。
鉴于组串式以上显著的客户价值优势,华为主张用组串式全面替换集中式逆变器。华为的产品从发布之初就获得客户广泛认可。目前,业界众多客户已经高度肯定华为逆变器在实际使用中在发电量、易安装维护等方面的价值,纷纷修改建设计划从集中式转为组串式,其中不乏百兆瓦级大型电站。
本文只能带领大家对华为的逆变器有了初步的了解,对大家入门会有一定的帮助,同时需要不断总结,这样才能提高专业技能,也欢迎大家来讨论文章的一些知识点。
光伏分布式发电是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。然而分布式发电对如何最大化太阳能发电量、如何保证电网安全也提出了严格要求,这一过程光伏逆变器的功能性和稳定性也显得异常关键。
分布式发电系统中光伏发电的关键技术
对于以上各种光伏发电结构,不论是需要与主干电网并联运行的荒漠电站和光伏一体建筑,还是与储能设备和其他能源联合发电的独立光伏电网,都具有分布式发电的特点。
在分布式发电系统中,光伏发电相关的关键技术和研究热点有:
1. 适应光伏发电的电力电子变换器
目前常用的并网光伏逆变器大多采用DC-DC-AC的双级结构。这是因为光伏阵列提供的直流电压普遍低于要求的交流输出电压,而DC-AC变换电路中,应用最广泛的全桥逆变器和半桥逆变器均属于Buck型,瞬时输出电压总低于输入电压,只能实现降压变换。为此,一般在桥式逆变电路前增加一级可升压变换的DC-DC变换器,将输入直流电压升高。并且,由于光伏阵列的直流电压典型值比交流电压峰值低很多,DC-DC变换器应当具有高的电压增益。可以用有高频隔离的间接DC-DC变换器达到上述要求,这也同时可以满足电气隔离要求。当然,可以在桥式逆变电路后增加工频升压变压器,在提供电气隔离的同时提高电压等级。双级结构的光伏并网逆变器虽然能够灵活适应各种输入输出电压指标,还具有更高的自由度等级(即更多的可控变量),可同时实现多种功能(例如,电气隔离,MPPT,无功补偿,有源滤波,等),但功率级的数量增多,将降低整体的效率,可靠性和简洁程度,增加系统开销。为此,目前逆变器研究的一大发展趋势,就是直接将多功率级的系统架构整合为单级系统,即所谓单级逆变器。
储能元件是光伏系统重要的组成部分。针对各种储能元件的特点,找到合适的电力电子变换器结构,也是光伏发电中重要的研究热点。
研究适应光伏发电的电力电子变换器的重点是使光伏系统在整个工作范围内均能实现高效率、高功率密度和高可靠性的运行。
2. 网络拓扑结构及其优化配置
包括太阳能在内的可再生能源的能量密度低,随机性强,由其构成的分布式发电系统的网络拓扑结构与传统的集中式发电系统的网络结构有显著的区别。在此方面,应根据对当地可再生能源的分布预测、随机性与可用性评估、负荷水平评估,提出基于可再生能源的分布式发电系统的网络拓扑;研究分布式发电系统中母线电压的形式(交流或直流)、大小、频率(对于交流形式)等物理量的选择方法;提出该分布式发电系统中对太阳能光伏发电单元、风力发电单元、多元复合储能单元(含飞轮、超级电容和蓄电池)的容量配置方法,以降低系统成本;研究分布式发电系统中各种电力电子变换器的配置及其输入输出电压、功率等级的选择。
3. 分布式发电系统并网控制
由于分布式发电系统具有多能量来源、多变流器(主要是逆变器)并网的特点,因此必须对其并网控制进行研究。在此方面,包括:针对具有多能源多并网逆变器的分布式发电系统,研究其并网运行时相互耦合影响的机理和并网协调控制问题;研究独立运行时多个逆变器的电压和频率的协调控制,以实现动态和稳态负荷的合理分配;针对具有多能源多并网逆变器的分布式发电系统,研究合适的并网、独立控制模式和协调一致的切换控制策略;研究柔性并网、暂态过程以及分布式发电系统对电网或本地负荷的冲击影响等问题;针对具有多能源多并网逆变器的分布式发电系统的特点,开展适合并网逆变器的无盲区孤岛检测方法和防伪孤岛技术研究。
4. 分布式发电系统的能量管理
针对分布式源(DR)的随机性、分布式发电单元的投切、负荷变化、敏感负荷对供电可靠性和电能质量高要求、分布式发电系统附近配电线路拥塞、分布式发电系统与电网之间的供购电计划等问题,研究分布式发电系统各种运行方式下分布式发电单元、储能单元与负荷之间的能量优化,满足经济运行的要求;针对分布式发电系统并网和故障解列时的能量变化,研究分布式发电系统运行方式变化时的能量调度策略,满足分布式发电系统运行方式切换的要求。
5.光伏系统的安全性和可靠性问题
在分布式系统的相关并网规范中,对各发电单元的端口特性提出了具体的要求,为此,需要分析分布式发电系统的稳态及动态特性,包括不同分布式发电单元以及分布式发电系统并网端口特性。稳态情况下主要包括:有功、无功、电压、频率和谐波等特性,考虑到分布式发电高度随机性,还要研究这些特性随时间变化规律。具体到光伏系统,目前遇到的最大安全性和可靠性问题包含以下几个方面:并网逆变器的直流分量注入问题;光伏并网单元的对地漏电流问题;孤岛及其检测技术问题。