大家好!今天让小编来大家介绍下关于光伏发电接入配电网_太阳能光伏系统的相关政策的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.智能电网重大科技产业化工程“十二五”专项规划的重点任务2.太阳能光伏系统的相关政策
3.为什么接入光伏电源后,由于馈线上的传输功率减少
智能电网重大科技产业化工程“十二五”专项规划的重点任务
风电机组/光伏组件随风速或辐照强度的出力特性、出力波动特性与概率分布;风电场、光伏电站集群出力的时空分布和出力特性;风电场、光伏电站集群控制系统;大型风电基地或大型光伏发电基地的集群控制平台系统示范工程。
大规模间歇式能源发电实时监测技术、出力特性及其对调度计划的影响;大规模间歇式能源发电日前与日内调度策略与模型;省级、区域、国家级范围内逐级间歇式能源消纳的框架体系;多时空尺度间歇式能源发电协调调度策略模型及系统示范工程。
大型风电场接入的柔性直流输电系统分析与建模技术;柔性直流输电系统数字物理混合仿真平台;交/直流混合接入的控制方法;柔性直流输电系统故障分析与保护策略;输电工程关键技术及样机;核心装备研制与示范工程。
间歇式电源基础数据、模型及参数辨识技术;间歇式电源与电网的协调规划技术;间歇式电源并网全过程仿真分析技术;间歇式电源接入电网安全性、可靠性、经济性分析评估理论和方法。
适应高渗透率间隙性电源接入电网的综合规划方法;提高区域电网接纳间歇性电源能力的关键技术;时空互补的区域电网间歇性电源优化调度方法和协调控制策略;风、光、储、水等多种电源多点接入互补运行技术;含高渗透率间歇性电源的区域电网防灾技术、应急机制、数字仿真平台和示范应用。
区域性高密度、多接入点光伏系统并网及其与配电网协调关键技术,重点研究屋顶、建筑幕墙与光伏一体化技术,并探索并网运营的商业模式;功率可调节光伏系统与储能系统稳定控制技术、区域性高密度、多接入点光伏系统的电能质量综合调节技术、新型孤岛检测与保护技术、能量管理技术;不同储能系统的高效率智能化双向变流器、新型集中与分散孤岛检测装置、分散计量测控系统和中央测控系统等关键设备。
微网的规划设计理论、方法、综合性能评价指标体系、规划设计支持系统、运行控制技术;微网动态模拟实验平台和微网中央运行管理系统;具有多种能源综合利用的微网示范工程。
大容量储能与间歇式电源发电出力互补机制,储能系统与间歇式电源容量配置技术及优化方法;储能电站提高间歇式电源接入能力应用控制与能量管理技术;储能电站的多点布局方法及广域协调优化控制技术。
多种类型新能源发电集中综合消纳在规划、分析、调度运行、继电保护、安稳控制、防灾应急等领域的关键技术。考虑到我国风光资源丰富区域的电网结构薄弱的特点,发展电源电网综合规划方法,提出时空互补的优化调度方法和协调控制策略,研究高可靠性继电保护与安全稳定协调控制系统,发展防灾技术和应急机制。
不同类型系统故障引起的大型风电场群连锁故障现象,抑制大型风电场群发生连锁故障技术方案,大型风电场群参与系统稳定控制的技术方案,包含系统级的大型风电场群故障穿越综合解决方案及其在大型风电基地上的示范应用。
风电机组、光伏发电系统先进控制技术;新能源发电设备监测与信息化技术;新能源电站的智能协调控制技术与协调控制系统。
含风光储的分布式发电接入配电网控制保护及可靠供电技术、信息化技术;含风光储分布式发电接入配电网的电能质量问题;包含风光储的分布式发电接入配电网示范工程。
综合利用多种技术手段,突破小水电群大规模接入电网的技术瓶颈,减少其对电网安全稳定运行的影响。研究提高小水电群接入消纳能力的电网优化方法和柔性交流、柔性直流输电技术,小水电发电能力预测技术,小水电监测与仿真平台集成技术,小水电与大中型水电站群系统多时空协调控制方法,小水电与风电、火电系统多时空协调控制,提高小水电群接入消纳能力的区域稳定控制理论、控制方法和控制系统。
间歇式能源发电出力的概率分布规律并建立相应的模型,间歇式能源网源协调控制技术,间歇式能源发电系统故障穿越技术,间歇式能源发电系统电气故障诊断及自愈技术。
“风电+抽蓄”的运营模式。设计风电抽蓄联合运行模式,建立包括联合优化模型、联合仿真、安全校核、模拟交易等在内的支撑系统,形成完整的风电抽蓄联合运行管理系统框架。
间歇式电源功率波动特性及其对电网的影响;广域有功功率及频率控制、分层分级无功功率及电压控制技术,电力系统动态稳定性分析及控制技术;机组-场群-电网分级分散协同控制技术;严重故障下新能源电力系统故障演化机理及安全防御策略,考虑交直流外送等方式下的间歇式电源紧急控制、输电系统紧急控制以及其他安控措施的协调控制技术。
含大规模间歇式电源的交直流互联大电网的协调优化运行技术,广域协调阻尼控制技术,状态监测与信息集成技术,实时风险评估技术,智能优化调度和安全防御技术。 电动汽车电池更换站运行特性,更换站作为分布式储能单元接入电网的关键技术和控制策略;电池梯次利用的筛选原则、成组方法和系统方案;更换站多用途变流装置;更换站与储能站一体化监控系统;更换站与储能站一体化示范工程。
电动汽车充电需求特性和规模化电动汽车充电对电网的影响;电动汽车有序充电控制管理系统;电动汽车有序充电试验系统。
电动汽车与电网互动的控制策略和关键技术;电动汽车智能充放电机、智能车载终端和电动汽车与电网互动协调控制系统;电动汽车与电网互动实验验证系统;电动汽车充放电设施检验检测技术。
电动汽车新型充放电技术;电动汽车智能充放电控制策略及检测技术;充电设施与电网互动运行的关键技术。
规模化电动汽车电池更换技术、计量计费、资产管理技术;充电设施运营的商业模式;基于物联网的智能充换电服务网络的运营管理系统建设方案。 基于锂电池储能装置的大容量化技术,包括电池成组动态均衡、电池组模块化、基于电池组模块的储能规模放大、电池系统管理监控及保护等技术;电池储能系统规模化集成技术,包括大功率储能装置及储能规模化集成设计方法、大容量储能系统的监控及保护技术、储能系统冗余及扩容方法、储能电站监控平台。
多类型储能系统的协调控制技术;多类型储能系统容量配置、优化选择准则以及优化协调控制理论体系;基于多类型储能系统的应用工程示范。
单体钠硫电池产品化和规模制备自动化中的关键问题以及集成应用中的核心技术,先进的钠硫电池产业化制备技术,MW级钠硫电池储能电站的集成应用技术。
MW以上级液流电池储能关键技术,5MW/10MWh全钒液流储能电池系统在风力发电中的应用示范,国际领先、自主知识产权的液流电池产业化技术平台。
锂离子电池的模块化成组技术;电池储能系统热量管理技术、状态监控及均衡技术、储能电池检测和评价技术;模块化储能变流技术,及各种不同型式的储能材料与功率变换器的配合原则;基于变流器模块的电池储能规模化系统集成技术,及储能系统电站化技术。
储能系统的特性检测技术;储能系统的应用依据和评估规范;储能系统并网性能评价技术,涵盖电力储能系统的研究、制造、测试、设计、安装、验收、运行、检修和回收全过程的技术标准和应用规范。 智能配电网自愈控制框架、模型、模式和技术支撑体系;含分布式电源/微网/储能装置的配电网系统分析、仿真与试验技术;考虑安全性、可靠性、经济性和电能质量的智能配电网评估指标体系;含分布式电源/微网/储能装置的配电网在线风险评估及安全预警方法、故障定位、网络重构、灾害预案和黑启动技术;智能配电单元统一支撑平台技术;智能配电网自愈控制保护设备和自愈控制系统;智能配电网自愈控制示范工程。
灵活互动的智能用电技术体系架构;智能用电高级量测体系标准、系统及终端技术;用户用电环境(特别是城市微气象)与用电模式的相互影响,不同条件下的负荷特性以及对用电交互终端、家庭用电控制设备的影响;智能用电双向互动运行模式及支撑技术。
智能配用电示范园区规划优化和供电模式优化方法。配电一次设备与智能配电终端的融合与集成技术;配电自动化系统与智能用电信息支撑平台及智能配电网自愈控制系统的集成技术;用电信息采集系统与高级量测系统、智能用电互动平台的集成技术;智能用电小区用户能效管理系统与智能家居的集成技术;智能楼宇自动化系统与建筑用电管理系统的集成技术;分布式储能系统优化配置方法和运行控制技术;提高配电网接纳间歇式电源能力的分布式储能系统优化配置方法和运行控制技术,分布式储能系统参与配电网负荷管理的优化调度方法,配电网分布式储能系统的综合能量管理技术;智能配用电示范园区。
主动配电网的网络结构及其信息控制策略,主动配电网对间歇式能源的多级分层消纳模式,主动配电网与间歇式能源的协调控制技术。
智能配电网下新型保护、量测的原理和算法;智能配用电高性能通信网技术;智能配电网广域测量、自适应保护及重合闸等关键技术;开发智能配电网新型量测、通信、保护成套设备,智能配电网新型量测、通信、保护成套设备的产业化。
智能配电网的优化调度模式、优化调度技术,面向分布式电源、配电网络以及多样性负荷的优化调度方法;包括优化调度系统以及新能源管控设备等关键装备;智能配电网运行状态的安全、可靠、经济、优质等指标评价技术。
钢铁企业等大型工业企业电网的智能配用电集成技术。配电自动化系统与智能用电信息支撑平台及智能配电网自愈控制系统的集成技术;用电信息采集系统与高级量测系统、智能用电互动平台的集成技术;分布式储能系统优化配置方法和运行控制技术。
适于岛屿、油田群的能源高效利用的智能配网集成技术,包括信息支撑平台、自愈控制、用电信息采集、高级量测、用电互动、能效管理、储能系统优化配置和运行控制,建设配网综合示范工程。
高效自治微网群的规划设计及评价体系,稳态运行与多维能量管理技术,多空间尺度微网群自治运行控制器样机,统一调度平台软件,多空间尺度高效自治微网群的示范应用。
孤岛型微电网的频率稳定机理与负荷-频率控制方法,孤岛型微电网的电压稳定机理与动态电压稳定控制方法,大规模可再生能源接入孤岛型微电网的技术,孤岛型微电网系统的示范工程建设及现场运行测试与实证性研究。 电网智能调度一体化支撑关键技术;大电网运行状态感知、整体建模、风险评估与故障诊断技术;多级多维协调的节能优化调度关键技术等。
在线安全分析并行计算平台的协调优化调度技术,复杂形态下在线安全稳定运行综合安全指标、评价方法和实现架构;大电源集中外送系统阻尼控制技术,次同步谐振/次同步振荡的在线监测分析预警及阻尼控制技术;基于广域信息的大电网交直流智能协调控制和紧急控制技术等。 传感器接口及植入技术,电子式互感器(EVT/ECT)的集成设计技术,智能开关设备的技术标准体系及智能化实施方案;具备测量、控制、监测、计量、保护等功能的智能组件技术及其与智能开关设备的有机集成技术;适用于气体介质的压力与微水、高抗振性能的位移、红外定位温度、声学、局部放电信号等传感器及接口技术,各类传感器的可靠性设计技术和检验标准;开关设备运行、控制和可靠性等状态的智能评测和预报技术,智能开关设备与调控系统的信息互动技术,开关设备的程序化和选相合闸控制技术等。
高压设备基于RFID、GPS及状态传感器的一体化识别、定位、跟踪和监控的智能监测模型,输变电设备智能测量体系下的全景状态信息模型;具有数据存储能力、计算能力、联网能力、信息交换和自治协同能力的一体化智能监测装置;基于IEC标准的全站设备状态信息通讯模型和接口体系构架,输变电设备状态信息和自动化信息的集成关键技术,标准化全站设备状态采集和集成设备关键技术;输变电高压设备智能监测与诊断技术,输变电区域内多站的分层分布式状态监测、采集和一体化数据集成、存储、分析应用系统。 智能配用电信息及通信体系与建模方法;智能配用电系统海量信息处理技术;智能配用电信息集成架构及互操作技术;复杂配用电系统统一数据采集技术;智能配用电业务信息集成与交互技术;智能配用电信息安全技术;智能配用电高性能通信网技术等。
电力通信网络技术体制的安全机理与属性;通信安全对智能电网安全稳定运行的影响;保障智能电网各个环节的通信安全技术与组网模式;广域电网实时通信业务可靠传输技术、支持多重故障恢复的通信网自愈与重构技术;电力通信网络的安全监测及防卫防护技术;电力通信网络安全性能优化技术;电力通信网络安全评价体系;智能电网通信网络综合管理与网络智能分析技术,电力通信网综合仿真与测试平台,电力通信智能化网络管理示范工程。
实用的新型电力参量传感器,以及多参量感知集成的无线传感器网络技术、多测点多参量的光纤传感网络技术;多种传感装置的融合技术;电力传感网综合信息接入与传输平台技术;电力物联网编码技术、海量数据存储、过滤、挖掘和信息聚合技术;新一代高性能电力线载波(宽带/窄带)关键通信技术;电力新型特种光缆及试点工程,新型特种光缆设计、制造、试验、施工、运维等配套支撑技术及基本技术框架,新型特种光缆的应用模式和技术方案;智能电网统一通信的应用模式、部署方式和网络架构,统一通信在支撑调度、应急、用电管理等各环节的应用和解决方案。
智能电网统一信息模型及信息化总体框架;电网海量信息的存储结构、索引技术、混合压缩技术、数据并发处理、磁盘缓存管理、虚拟化存储和安全可靠存储机制等信息存储技术;基于计算机集群系统的并行数据库统一视图和接口、并行查优、海量负载平衡和海量并行数据的备份和恢复技术;海量实时数据与非实时数据的整合检索和利用技术;云计算在海量数据处理中的应用技术;海量实时数据库管理系统;高效存储及实时处理智能信息服务平台示范工程。
电网可视信息的模式识别、图形分析、虚拟现实等技术,可视化支撑技术架构;智能监控系统架构,计算机视觉感知方法、智能行为识别与处理算法等关键技术;智能电网双向互动的信息服务平台技术,桌面终端、移动终端、互动大屏幕等多信息展现渠道;智能电网双向互动的信息服务平台示范工程。 静止同步串联补偿器、统一潮流控制器的关键技术,包括主电路拓扑、仿真分析技术、关键组件的设计制造技术、控制保护技术、试验测试技术,开发工业装置并示范应用;利用柔性交流输电设备的潮流控制和灵活调度技术。
高性能、低成本、安装运维方便的高压大容量新型固态短路限流器,包括新型固态限流装置分析建模与仿真技术、固态限流器主电路设计技术、固态限流器的控制与保护策略,工程化的高压大容量新型固态限流装置研制。
面向输电系统应用的高温超导限流器的核心关键技术,包括超导限流装置的限流机理、主电路拓扑、建模和仿真分析、优化设计方法、控制策略、保护系统、试验测试技术,220kV高温超导限流器示范装置研制。
高压直流输电系统用高压直流断路器分断原理理论分析、模型与仿真、直流断路器总体方案、成套电气与结构、关键零部件、系统集成化、成套试验方法、SF6断路器电弧特性等,15kV级直流断路器样机研制及示范工程。
高压输电系统用高压直流陆上和海底电缆的绝缘结构型式、机械和电学特性、绝缘、结构和导电材料选择、成型工艺、相关测试和试验方法、可靠性试验,±320kV级陆上和海底电缆的研制及相关试验测试。
直流输电系统中的直流电流和电压测量方法和技术,直流输电系统直流电流和电压测试系统方法和技术路线,直流输电系统测量装置计量和标定方法,高电位直流电流和直流电压测试系统,全光直流电流互感器和全学直流电压互感器,满足特高压直流输电和柔性直流输电需求的样机及相关试验、认证和示范应用。
换流器拓扑结构和主回路优化、多端柔性直流供电系统分析、计算和仿真;多端直流供电系统与交流供电系统的相互影响和运行方式,研究多端直流供电系统的控制保护系统架构、电压、潮流和电能质量控制方法;紧凑型、模块化换流站设备及其控制保护系统,它们在城市供电中的示范应用。
直流配电网拓扑结构、基本模型、控制保护方案,直流配网仿真模型和技术,直流配电网设计技术,直流配电网换流站关键装备,直流配电网经济安全指标体系和评估方法,考虑各类分布式电源接入和电动汽车充换电设备与电网互动情况下的直流配电网建设和优化运行方案,直流配电网管理和控制系统,直流配电网示范工程及相关技术、装置和系统的有效验证。 在一个相对独立的地域范围,建立一个涵盖发电、输电、配电、用电、储能的智能电网综合集成示范工程,实现智能电网多个领域技术的综合测试、实验和示范,并研究智能电网的可行商业运营模式,形成对未来智能电网形态的整体展示,体现低碳、高效、兼容接入、互动灵活的特点。
智能电网集成综合示范的技术领域包括:
大规模接入间歇式能源并网技术;
与电动汽车充电设施协调运行电网技术;
大规模储能系统;
高密度多点分布式供能系统;
智能配用电系统;
用户与电网的互动技术;
智能电网信息及通信技术。
太阳能光伏系统的相关政策
光伏,风机,储能,柴发控制参数对微电网的影响是:
1、对线路潮流的影响。未接入光伏并网发电系统的时候,电网支路潮流一般是单向流动的,并且对于配电网来说随着距变电站的距离增加有功潮流单调减少。然而,当光伏电源接入电网后,从根本上改变了系统潮流的模式且潮流变得无法预测。这种潮流的改变使得电压调整很难维持,甚至导致配电网的电压调整设备出现异常响应。
2、对系统保护的影响。当光照良好,光伏并网电站输出功率较大时,短路电流将会增大,可能会导致过流保护配合失误,而且过大的短路电流还会影响熔断器的正常工作。此外,对于配电网来说未接入光伏发电系统之前支路潮流一般是单向的,其保护不具有方向性,而接入光伏发电系统以后该配电网变成了多源网络,网络潮流的流向具有不确定性。因此,必须要求增设具有方向性的保护装置。
3、对电网经济性运行的影响。由于光伏电源的自身输出不稳定性,当光伏发电系统并网运行后,系统必须增加相应容量的旋转备用,以保证系统的调峰、调频能力,也就是说,光伏并网发电系统向电网供电,降低了机组利用小时数,牺牲了电网的经济性运行。以上这些就是光伏,风机,储能,柴发控制参数对微电网的影响。
为什么接入光伏电源后,由于馈线上的传输功率减少
国家能源局于2013年11月18日发布《分布式光伏发电项目管理暂行办法》
第一章 总 则
第一条 为规范分布式光伏发电项目建设管理,推进分布式光伏发电应用,根据《中华人民共和国可再生能源法》、《中华人民共和国电力法》、《中华人民共和国行政许可法》,以及《国务院关于促进光伏产业健康发展的若干意见》,制定本办法。
第二条 分布式光伏发电是指在用户所在场地或附近建设运行,以用户侧自发自用为主、多余电量上网且在配电网系统平衡调节为特征的光伏发电设施。
第三条 鼓励各类电力用户、投资企业、专业化合同能源服务公司、个人等作为项目单位,投资建设和经营分布式光伏发电项目。
第四条 国务院能源主管部门负责全国分布式光伏发电规划指导和监督管理;地方能源主管部门在国务院能源主管部门指导下,负责本地区分布式光伏发电规划、建设的监督管理;国家能源局派出机构负责对本地区分布式光伏发电规划和政策执行、并网运行、市场公平及运行安全进行监管。
第五条 分布式光伏发电实行“自发自用、余电上网、就近消纳、电网调节”的运营模式。电网企业采用先进技术优化电网运行管理,为分布式光伏发电运行提供系统支撑,保障电力用户安全用电。鼓励项目投资经营主体与同一供电区内的电力用户在电网企业配合下以多种方式实现分布式光伏发电就近消纳。
第二章 规模管理
第六条 国务院能源主管部门依据全国太阳能发电相关规划、各地区分布式光伏发电发展需求和建设条件,对需要国家资金补贴的项目实行总量平衡和年度指导规模管理。不需要国家资金补贴的项目不纳入年度指导规模管理范围。
第七条 省级能源主管部门根据本地区分布式光伏发电发展情况,提出下一年度需要国家资金补贴的项目规模申请。国务院能源主管部门结合各地项目资源、实际应用以及可再生能源电价附加征收情况,统筹协调平衡后,下达各地区年度指导规模,在年度中期可视各地区实施情况进行微调。
第八条 国务院能源主管部门下达的分布式光伏发电年度指导规模,在该年度内未使用的规模指标自动失效。当年规模指标与实际需求差距较大的,地方能源主管部门可适时提出调整申请。
第九条 鼓励各级地方政府通过市场竞争方式降低分布式光伏发电的补贴标准。优先支持申请低于国家补贴标准的分布式光伏发电项目建设。
第三章 项目备案
第十条 省级及以下能源主管部门依据国务院投资项目管理规定和国务院能源主管部门下达的本地区分布式光伏发电的年度指导规模指标,对分布式光伏发电项目实行备案管理。具体备案办法由省级人民政府制定。
第十一条 项目备案工作应根据分布式光伏发电项目特点尽可能简化程序,免除发电业务许可、规划选址、土地预审、水土保持、环境影响评价、节能评估及社会风险评估等支持性文件。
第十二条 对个人利用自有住宅及在住宅区域内建设的分布式光伏发电项目,由当地电网企业直接登记并集中向当地能源主管部门备案。不需要国家资金补贴的项目由省级能源主管部门自行管理。
第十三条 各级管理部门和项目单位不得自行变更项目备案文件的主要事项,包括投资主体、建设地点、项目规模、运营模式等。确需变更时,由备案部门按程序办理。
第十四条 在年度指导规模指标范围内的分布式光伏发电项目,自备案之日起两年内未建成投产的,在年度指导规模中取消,并同时取消享受国家资金补贴的资格。
第十五条 鼓励地市级或县级政府结合当地实际,建立与电网接入申请、并网调试和验收、电费结算和补贴发放等相结合的分布式光伏发电项目备案、竣工验收等一站式服务体系,简化办理流程,提高管理效率。
第四章 建设条件
第十六条 分布式光伏发电项目所依托的建筑物及设施应具有合法性,项目单位与项目所依托的建筑物、场地及设施所有人非同一主体时,项目单位应与所有人签订建筑物、场地及设施的使用或租用协议,视经营方式与电力用户签订合同能源服务协议。
第十七条 分布式光伏发电项目的设计和安装应符合有关管理规定、设备标准、建筑工程规范和安全规范等要求。承担项目设计、咨询、安装和监理的单位,应具有国家规定的相应资质。
第十八条 分布式光伏发电项目采用的光伏电池组件、逆变器等设备应通过符合国家规定的认证认可机构的检测认证,符合相关接入电网的技术要求。
第五章 电网接入和运行
第十九条 电网企业收到项目单位并网接入申请后,应在20个工作日内出具并网接入意见,对于集中多点接入的分布式光伏发电项目可延长到30个工作日。
第二十条 以35千伏及以下电压等级接入电网的分布式光伏发电项目,由地市级或县级电网企业按照简化程序办理相关并网手续,并提供并网咨询、电能表安装、并网调试及验收等服务。
第二十一条 以35千伏以上电压等级接入电网且所发电力在并网点范围内使用的分布式光伏发电项目,电网企业应根据其接入方式、电量使用范围,本着简便和及时高效的原则做好并网管理,提供相关服务。
第二十二条 接入公共电网的分布式光伏发电项目,接入系统工程以及因接入引起的公共电网改造部分由电网企业投资建设。接入用户侧的分布式光伏发电项目,用户侧的配套工程由项目单位投资建设。因项目接入电网引起的公共电网改造部分由电网企业投资建设。
第二十三条 电网企业应采用先进运行控制技术,提高配电网智能化水平,为接纳分布式光伏发电创造条件。在分布式光伏发电安装规模较大、占电网负荷比重较高的供电区,电网企业应根据发展需要建设分布式光伏发电并网运行监测、功率预测和优化运行相结合的综合技术体系,实现分布式光伏发电高效利用和系统安全运行。
第六章 计量与结算
第二十四条 分布式光伏发电项目本体工程建成后,向电网企业提出并网调试和验收申请。电网企业指导和配合项目单位开展并网运行调试和验收。电网企业应根据国家有关标准制定分布式光伏发电电网接入和并网运行验收办法。
第二十五条 电网企业负责对分布式光伏发电项目的全部发电量、上网电量分别计量,免费提供并安装电能计量表,不向项目单位收取系统备用容量费。电网企业在有关并网接入和运行等所有环节提供的服务均不向项目单位收取费用。
第二十六条 享受电量补贴政策的分布式光伏发电项目,由电网企业负责向项目单位按月转付国家补贴资金,按月结算余电上网电量电费。
第二十七条 在经济开发区等相对独立的供电区统一组织建设的分布式光伏发电项目,余电上网部分可向该供电区内其他电力用户直接售电。
第七章 产业信息监测
第二十八条 组织地市级或县级能源主管部门按月汇总项目备案信息。省级能源主管部门按季分类汇总备案信息后报送国务院能源主管部门。
第二十九条 各省级能源主管部门负责本地区分布式光伏发电项目建设和运行信息统计,并分别于每年7月、次年1月向国务院能源主管部门报送上半年和上一年度的统计信息,同时抄送国家能源局及其派出监管机构、国家可再生能源信息中心。
第三十条 电网企业负责建设本级电网覆盖范围内分布式光伏发电的运行监测体系,配合本级能源主管部门向所在地的能源管理部门按季报送项目建设运行信息,包括项目建设、发电量、上网电量、电费和补贴发放与结算等信息。
第三十一条 国务院能源主管部门委托国家可再生能源信息中心开展分布式光伏发电行业信息管理,组织研究制定工程设计、安装、验收等环节的标准规范,统计全国分布式光伏发电项目建设运行信息,分析评价行业发展现状和趋势,及时提出相关政策建议。经国务院能源主管部门批准,适时发布相关产业信息。
第八章 违规责任
第三十二条 电网企业未按照规定收购分布式光伏发电项目余电上网电量,造成项目单位损失的,应当按照《中华人民共和国可再生能源法》的规定承担经济赔偿责任。
第九章 附 则
第三十三条 本办法由国家能源局负责解释,自发布之日起施行。
附表1:分布式光伏发电项目备案汇总表(略)
附表2:1兆瓦以上分布式光伏发电项目信息表(略)
电力电子论坛特约顾问:不论是集中式发电还是分布式发电,都需要供电稳定、可靠。分布式光伏发电利用太阳能,是人们利用清洁能源的重要手段。但是,日夜更替,天气无常,分布式光伏发电的出力不具备规律性,在接入公共电网后,需要公共电网作为备用。分布式电源接入后对电网的影响包括几个方面: (1)是对电网规划产生影响。负荷预测是电网规划设计的基础,能否准确地预测负荷是电网规划的前提条件。分布式光伏发电的并网,加大了其所在区域的负荷预测难度,改变了既有的负荷增长模式。大量的分布式电源的接入,使配电网的改造和管理变得更为复杂。 (2)是不同的并网方式影响各不相同。①分布式光伏发电离网运行时对电网没有影响;②并网但不向电网输送功率的分布式光伏发电会造成电压波动;③并网并且向电网输送功率的并网方式,会造成电压波动并且影响继电保护的配置。 (3)是对电能质量产生影响。分布式光伏发电接入的重要影响是造成馈线上的电压分布改变,其影响的大小与接入容量、接入位置密切相关。光伏发电一般通过逆变器接入电网,这类电力电子器件的频繁开通和关断,容易产生谐波污染。 (4)是对继电保护的影响。我国的配电网大多为单电源放射状结构,多采用速断、限时速断保护形式,不具备方向性。这种保护方式在现有的辐射型配电网上,能够有效地保护全部线路。但是,在配电网中接入分布式电源后,其注入功率会使继电保护范围缩小,不能可靠地保护整体线路,甚至在其他并联分支故障时,引起安装分布式光伏发电的继电保护误动作。 查看>>
记得啊