大家好!今天让小编来大家介绍下关于光伏组件的栅线_太阳能光伏组件的电池组件的制作流程的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.太阳能电池片纸防段栅指哪里2.太阳能光伏组件的电池组件的制作流程
太阳能电池片纸防段栅指哪里
本实用新型属于晶硅太阳能电池片领域,涉及一种太阳能电池片,特别是一种防断栅的太阳能电池片及具有其的光伏组件。
背景技术:
高效太阳能电池片行业现有的电池片网版设计在组件端焊接后,覆盖电池片的焊带起头部分与收尾部分与主栅端部易分离,导致细栅线的电流不能被收集到主栅上,造成el断栅,断栅严重的电池片的电流降低会影响到整个组件的电性能,功率降低。这主要是由于:现有组件焊接机主流的焊接技术为红外焊接技术,高效电池片主栅两端起头与收尾在覆盖涂锡焊带后,经过红外灯箱焊接,焊带会与主栅的起头与收尾部分的银浆接触并焊接在一起,在经过摆串机搬运或是人工调整电池串后,电池串受到震动,焊带与银浆脱开,造成主栅的起头部分和收尾部分与细栅断开,形成断栅。
在并网电站中由于组件内存在断栅容易产生热斑效应,局部发热过高,影响组件的寿命,严重的烧坏组件。
技术实现要素:
针对上述技术问题,本实用新型旨在提供一种防断栅的太阳能电池片,避免主栅线的头尾部与细栅线断开。
本实用新型还提供一种光伏组件,能够减弱或消除由断栅引起的局部发热。
为达到上述目的,本实用新型采用的技术方案如下:
一种防断栅的太阳能电池片,包括基片及形成在所述基片上的电极,所述电极包括多个主栅线和多个细栅线,每个所述主栅线分别包括本体及两组副主栅,所述本体具有用于与焊带起头部分连接的头部及用于与焊带收尾部分连接的尾部,所述头部和/或所述尾部分别和一组所述副主栅相接,每组所述副主栅分别包括至少两个副主栅,所述两个副主栅位于所述本体的头部或尾部的两侧,每个所述副主栅分别自所述基片的外沿向基片中部延伸并和所述本体的头部或尾部相接,且所述本体和所述副主栅的相接汇流点距所述基片外沿的距离大于所述本体的末端距所述基片外沿的距离,各所述细栅线分别和所述本体和/或所述副主栅交叉相接。
在一实施例中,各所述副主栅分别包括与所述本体相平行且不重合的第一段及连接于所述第一段及所述本体的头部或尾部之间的第二段。
优选地,所述第二段和所述细栅线相平行。
更优选地,所述第二段和其中一个所述细栅线重叠。
在一实施例中,每组所述副主栅的两个副主栅相对相应的本体对称。
在一实施例中,所述副主栅为宽度大于所述细栅线的实线。
更优选地,所述副主栅的宽度小于所述本体的宽度。
在一实施例中,所述副主栅包括两个或多个相互并列的细实线。
本实用新型还采用如下技术方案:
一种光伏组件,包括多个太阳能电池片及用于将多个所述电池片互联的焊带,所述太阳能电池片为如上所述的太阳能电池片,焊带起头部分与各所述电池片的各所述主栅线的所述本体的头部焊接,焊带收尾部分与各所述电池片的各所述主栅线的所述本体的尾部焊接。
本实用新型采用以上方案,相比现有技术具有如下优点:
本实用新型的太阳能电池片,在每根主栅线的本体两侧设置副主栅,副主栅收尾处与主栅线的本体搭接汇流,电池片边缘部分产生的电流经过细栅线收集到副主栅,由副主栅收集汇流到主栅线上,无论电池片起头和收尾焊带与主栅线本体的状态如何,都不会产生断栅现象,解决了主栅线起头和收尾银浆与涂锡焊带焊接后脱开造成的断栅问题,实现防断栅目的。进而减弱或消除由断栅引起的局部发热,达到保证组件性能和功率的目的。
附图说明
为了更清楚地说明本实用新型的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型实施例的一种太阳能电池片的结构示意图;
图2为图1中a处的局部放大图。
其中,1、基片;1a、外沿;2、主栅线;21、本体;21a、头部;21b、尾部;21c、末端;22、副主栅;221、第一段;222、第二段;23、相接汇流点;3、细栅线。
具体实施方式
下面结合附图对本实用新型的较佳实施例进行详细阐述,以使本实用新型的优点和特征能更易于被本领域的技术人员理解。在此需要说明的是,对于这些实施方式的说明用于帮助理解本实用新型,但并不构成对本实用新型的限定。此外,下面所描述的本实用新型各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以互相结合。
本实施例提供一种防断栅的太阳能电池片。参照图1所示,该防断栅的太阳能电池片,包括基片1及形成在基片1上的电极。基片1具体为晶硅基片。本实施例中,所述电极具体为正面电极。该电极包括多个主栅线2和多个细栅线3。如图1所示,各主栅线2整体沿纵向印刷在基片1上,各细栅线3横向印刷在基片1上并相互平行。每个主栅线2分别包括本体21及两组副主栅,本体21具有用于与焊带起头部分(起头的焊带)连接的头部21a及用于与焊带收尾部分(收尾的焊带)连接的尾部21b。头部21a和/或尾部21b分别和一组副主栅相接,每组副主栅分别包括两个副主栅22,两个副主栅22位于本体21的头部21a或尾部21b的两侧。每个副主栅22分别自基片1的外沿1a向基片1中部延伸并和本体21的头部21a或尾部21b相接,且本体21和副主栅22的相接汇流点23距基片1的外沿1a的距离大于本体21的末端21c距基片1的外沿1a的距离。头部21a及尾部21b分别具有一个末端21c,如图1所示,头部21a的末端21c为头部21a的最上端,尾部21b的末端21c为尾部21b的最下端。
如图2所示,本体21的末端21c相比本体21与副主栅22的相接汇流点23更为靠近基片1的外沿1a,副主栅22向内越过本体21的末端21c后汇流到本体21。各细栅线3分别和本体21和/或副主栅22交叉相接,具体地,靠近基片1外沿1a的若干条细栅线3和副主栅22交叉相接,基片1中部的若干条细栅线3和本体21交叉相接,有极少的几根细栅线3则和本体21及副主栅22均交叉相接。
具体地,各副主栅22分别包括与本体21相平行且不重合的第一段221及连接于第一段221及本体21的头部21a或尾部21b之间的第二段222,第二段222优选和细栅线3相平行,即副主栅22的第一段221和第二段222相互垂直。更为优选地,第二段222和其中一个细栅线3重叠,从而该细栅线3和副主栅22具有较大的接触面积,防断栅效果更好。每组副主栅22的两个副主栅22相对相应的本体21对称,以相应的本体21为对称轴而镜像对称。
本实施例中,副主栅22为宽度大于细栅线3的实线,其宽度优选为小于主栅线2的本体21的宽度。在另外一些实施例中,副主栅22包括两个或多个相互并列的细实线,其宽度等于或接近于细栅线3的宽度。
本实施例还提供一种光伏组件,包括多个上述的太阳能电池片及用于将多个电池片互联的焊带。焊带起头部21a分与各电池片的各主栅线2的本体21的头部21a焊接,焊带收尾部21b分与各电池片的各主栅线2的本体21的尾部21b焊接。
本实施例中,在每根主栅线2的本体21两侧设置副主栅22,副主栅22收尾处与主栅线2的本体21搭接汇流,电池片边缘部分产生的电流经过细栅线3收集到副主栅22,由副主栅22收集汇流到主栅线2上,无论电池片起头和收尾焊带与主栅线2本体21的状态如何,都不会产生断栅现象,解决了主栅线2起头和收尾银浆与涂锡焊带焊接后脱开造成的断栅问题,实现防断栅目的。进而减弱或消除由断栅引起的局部发热,达到保证组件性能和功率的目的。
上述实施例只为说明本实用新型的技术构思及特点,是一种优选的实施例,其目的在于熟悉此项技术的人士能够了解本实用新型的内容并据以实施,并不能以此限定本实用新型的保护范围。凡根据本实用新型的原理所作的等效变换或修饰,都应涵盖在本实用新型的保护范围之内。
太阳能光伏组件的电池组件的制作流程
通过优化光伏电池栅线结构,将常规电池的栅线结构由5主栅优化为12主栅(通常称之为MBB结构)。
对不同栅线结构的光伏电池和组件进行电学性能的测试对比,对比测试结果表明:MBB主栅结构的设计能够有效降低电池和组件的串联电阻和遮光面积,进一步增大电学增益和光学增益,将光伏组件的输出功率提升5 W~10 W。
MBB的优势,从理论上来说应该是非常明显的。通过栅线变细提高电池的受光量、降低组件串联电阻,可使晶硅组件功率提升约5W(相对5主栅),另一方面该技术还可以节省部分银浆耗量,从而降低电池成本。
但是,理论归理论,MBB技术在实际运用中到底会不会带来明显的发电量增益?
实际上,在标准测试条件(辐照量为1000W/m2)下MBB功率增益主要来自两个方面:电学增益,多主栅缩短细栅线电流传输距离,降低串联电阻Rs,进而降低电阻损耗;光学增益,MBB可以有效降低栅线遮光面积,提升电池受光面积,增加了入射角0时的电池受光量。
(1)电池测试
由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。
(2)正面焊接
将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。
(3)背面串接
背面焊接是将电池串接在一起形成一个组件串,采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次串接在一起并在组件串的正负极焊接出引线。
(4)层压敷设
背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:钢化玻璃、EVA、电池片、EVA、玻璃纤维、背板)。
(5)组件层压
将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA时,层压循环时间约为25分钟。固化温度为150℃。
(6)修边
层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。
(7)装框
类似与给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组件,延长电池的使用寿命。边框和玻璃组件的缝隙用硅酮树脂填充。各边框间用角键连接。
(8)焊接接线盒
在组件背面引线处焊接一个盒子,以利于电池与其他设备或电池间的连接。
(9)高压测试
高压测试是指在组件边框和电极引线间施加一定的电压,测试组件的耐压性和绝缘强度,以保证组件在恶劣的自然条件(雷击等)下不被损坏。
(10)组件测试
测试的目的是对电池的输出功率进行标定,测试其输出特性,确定组件的质量等级。主要就是模拟太阳光的测试Standard test condition(STC),一般一块电池板所需的测试时间在7-8秒左右。